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Exploring the energy landscape ChE210D 

Today's lecture: what are general features of the potential energy surface and 

how can we locate and characterize minima on it 

Derivatives of the potential energy function 

Forces  

For any atomic configuration, we can compute the force acting on each atom from the negative 

energy derivative with respect to the particle coordinates: 

𝑓𝑥,𝑖 = −
𝜕𝑈(𝐫𝑁)

𝜕𝑥𝑖
    𝑓𝑦,𝑖 = −

𝜕𝑈(𝐫𝑁)

𝜕𝑦𝑖
    𝑓𝑧,𝑖 = −

𝜕𝑈(𝐫𝑁)

𝜕𝑧𝑖
 

In shorthand notation, 

𝐟𝑁 = −
𝜕𝑈(𝐫𝑁)

𝑑𝐫𝑁
 

Alternatively, 

𝐟𝑁 = −∇𝑈(𝐫𝑁) 

That is, the force stems from the gradient of the potential energy. 

We can simplify this expression if our potential energy function is built from pairwise interactions, 

𝑈(𝐫𝑁) = ∑𝑢(𝑟𝑖𝑗)

𝑖<𝑗

 

We have that: 

𝑟𝑖𝑗
2 = (𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2
+ (𝑧𝑖 − 𝑧𝑗)

2
 

Consider computing the force on atom 𝑖.  There are 𝑁 − 1 terms in the pairwise summation that 

include the coordinates of atom 𝑖.  Thus the energy derivative with respect to 𝑥𝑖  is: 

𝑓𝑥,𝑖 = −
𝜕𝑈

𝜕𝑥𝑖
 

= −
𝜕

𝜕𝑥𝑖
∑𝑢(𝑟𝑖𝑗)

𝑗≠𝑖
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= −∑
𝜕𝑟𝑖𝑗

𝜕𝑥𝑖

𝜕

𝜕𝑟𝑖𝑗
𝑢(𝑟𝑖𝑗)

𝑗≠𝑖

 

Using the definition of 𝑟𝑖𝑗 above and taking the derivative, 

2𝑟𝑖𝑗
𝜕𝑟𝑖𝑗

𝜕𝑥𝑖
= 2(𝑥𝑖 − 𝑥𝑗) 

𝜕𝑟𝑖𝑗

𝜕𝑥𝑖
=

(𝑥𝑖 − 𝑥𝑗)

𝑟𝑖𝑗
 

Hence, 

𝑓𝑥,𝑖 = −∑
(𝑥𝑖 − 𝑥𝑗)

𝑟𝑖𝑗

𝜕

𝜕𝑟𝑖𝑗
𝑢(𝑟𝑖𝑗)

𝑗≠𝑖

 

Doing the same for the 𝑦 and 𝑧 coordinates, 

𝐟𝑖 = ∑
𝐫𝑖𝑗

𝑟𝑖𝑗

𝜕

𝜕𝑟𝑖𝑗
𝑢(𝑟𝑖𝑗)

𝑗≠𝑖

 

where 

𝐫𝑖𝑗 = 𝐫𝑗 − 𝐫𝑖 

For example, if our pair potential is the so-called soft-sphere interaction, 

𝑢(𝑟) = 𝜖 (
𝑟

 𝜎
)
−𝑛

 

where 𝑛 is a positive integer, then 

𝐟𝑖 = ∑
𝐫𝑖𝑗

𝑟𝑖𝑗
[−𝑛𝜖𝜎𝑛𝑟𝑖𝑗

−𝑛−1]

𝑗≠𝑖

 

Simplifying, 

𝐟𝑖 = −𝑛 ∑
𝐫𝑖𝑗

𝑟𝑖𝑗
2 [𝜖 (

𝑟𝑖𝑗

 𝜎
)
−𝑛

]

𝑗≠𝑖

 

Notice that the force acting on atom 𝑖 due to atom 𝑗 is just the negative of the force acting on 

atom 𝑗 due to atom 𝑖, since 

𝐟𝑖𝑗 = −𝐟𝑗𝑖 
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In simulation, we typically maintain an (N,3) array of forces.  A typical way to implement pairwise 

force and potential energy calculation in computer code is the following: 

set the potential energy variable and elements of the force array equal to zero 

loop over atom i = 1 to N – 1 

 loop over atom j = i+1 to N 

  calculate the pair energy of atoms i and j  

  add the energy to the potential energy variable 

  calculate the force on atom i due to j 

  add the force to the array elements for atom i 

  subtract the force from the array elements for atom j 

Second derivatives and the Hessian 

The curvature of the potential energy function surrounding a given atomic configuration 𝐫𝑁 is 

given by second derivatives.  There are 3𝑁 × 3𝑁 different second derivatives, attained by cross-

permuting different particle coordinates.  We typically write the second derivatives as a matrix 

called the Hessian: 

𝐇(𝐫𝑁) =

[
 
 
 
 
 
 
 
𝑑2𝑈(𝐫𝑁)

𝑑𝑥1
2

𝑑2𝑈(𝐫𝑁)

𝑑𝑥1𝑑𝑦1
⋯

𝑑2𝑈(𝐫𝑁)

𝑑𝑥1𝑑𝑧𝑁

𝑑2𝑈(𝐫𝑁)

𝑑𝑦1𝑑𝑥1

𝑑2𝑈(𝐫𝑁)

𝑑𝑦1𝑑𝑦1
⋯

𝑑2𝑈(𝐫𝑁)

𝑑𝑦1𝑑𝑧𝑁

⋮ ⋮ ⋱ ⋮
𝑑2𝑈(𝐫𝑁)

𝑑𝑧𝑁𝑑𝑥1

𝑑2𝑈(𝐫𝑁)

𝑑𝑧𝑁𝑑𝑦1
⋯

𝑑2𝑈(𝐫𝑁)

𝑑𝑧𝑁𝑑𝑧𝑁 ]
 
 
 
 
 
 
 

 

The Hessian is important in distinguishing potential energy minima from saddle points, as dis-

cussed in greater detail below.  It can be a memory-intensive matrix to compute in molecular 

simulation, as the number of elements is 9𝑁2. 

The energy landscape 

Basic definition and properties 

The potential energy function 𝑈(𝐫𝑁) defines all of the thermodynamic and kinetic properties of 

a classical atomic system.  We can think of this function as being plotted in a high-dimensional 

space where there are 3𝑁 axes, one for each coordinate of every atom.  An additional axis 

measures the potential energy, and we call the projection of the potential energy function in 

3𝑁 + 1 dimensional space as the potential energy landscape (PEL). 

Though we cannot visualize the PEL directly, the following schematic shows some features of it: 
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Stationary points correspond to the condition where the slope of the PEL is zero: 

∇𝑈(𝐫𝑁) = 𝟎 

This is shorthand for the following simultaneous conditions: 

𝜕𝑈(𝐫𝑁)

𝑑𝑥𝑖
= 0    

𝜕𝑈(𝐫𝑁)

𝑑𝑦𝑖
= 0    

𝜕𝑈(𝐫𝑁)

𝑑𝑧𝑖
= 0        𝑖 = 1,2, … ,𝑁 

Notice that these equations imply that the net force acting on each particle is zero: 

𝐟𝑖 = 0 

Therefore, the stationary points correspond to mechanically stable configurations of the atoms 

in the system.   

There are two basic kinds of stationary points: 

• For minima, the curvature surrounding the stationary point is positive.  That is, any move-

ment away from the point increases the potential energy. 

• For saddles, one can move in one or more directions around a stationary point and expe-

rience a decrease in potential energy. 

Scaling of the number of minima and saddle points 

PELs contain numerous stationary points.  It can be shown [Stillinger, Phys Rev E (1999); Shell et 

al, Phys Rev Lett (2004)] that both the number of minima and saddle points grow exponentially 

with the number of atoms: 

number of minima ~ exp(𝜎𝑁) 

particle coordinates, 𝐫𝑁 

𝑈(𝐫𝑁) 

local minima 

saddle point basin 

global minimum 
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number of saddle points ~ exp (𝜃𝑁) 

where 𝜎 and 𝜃 are system-specific constants but independent of the number of atoms. 

The implication of these scaling laws is that it is extraordinarily difficult to search exhaustively for 

all of the minima for even very small systems (~100 atoms), since their number is so great.  By 

extension, it is extremely challenging to locate the global potential energy minimum, that is, the 

set of particle coordinates that gives the lowest potential energy achievable.   

The following figure shows a disconnectivity graph for a system of just 13 Lennard-Jones atoms 

in infinite volume, taken from [Doye, Miller, and Wales, J. Chem. Phys. 111, 8417 (1999)]. 

 

The horizontal axis marks the potential energy and the lines show the connectivity of different 

minima.  To move from one minimum to another, one must travel the path formed when the 

lines extending from two minima connect to a common energetic point.  This small system has 

1467 distinct potential energy minima.  These results were generated using an advanced and 

computationally-intensive minima-finding algorithm. 

Relevance of finding minima 

Why should we care to find PEL minima?   
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• Mechanically stable molecular structures can be identified.  When examining conforma-

tional changes within a molecule, minima give the distinct conformational states possible.  

For changes among many molecules, the minima provide the basic structures associated 

with physical events in the system (e.g., binding).  Both can often be compared with ex-

periment. 

• Differences in the energies of different minimized structures provide a first-order per-

spective on the relative populations of these (neglecting entropies).  Again, this can be 

compared to experiment and often is an important force field diagnostic. 

• Initial structures in molecular simulations often need to be “relaxed” away from high-

energy states.  Minimization can take an initial structure and remove atomic overlaps or 

distorted bond and angle degrees of freedom. 

Locating local energy minima 

Problem formulation 

If we are anywhere within the basin of a minimum, we can define a steepest descent protocol 

that takes us to the minimum: 

𝑑𝐫𝑁

𝑑𝑠
= −∇𝑈(𝐫𝑁)     (lim 𝑠 → ∞) 

= 𝐟𝑁(𝐫𝑁) 

Here, 𝑠 is a fictitious time-like variable.  The solution to this first order differential equation in the 

limit that 𝑠 → ∞ is the set of coordinates at a minimum 𝐫min
𝑁 .  Here, we essentially follow the 

forces down the potential energy surface until we reach its bottom—the velocities vectors of 

each atom follow the negative forces.  In a two-dimensional contour plot of energies (as a func-

tion of coordinates), this would look like: 
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The steepest descent protocol is equivalent to an instantaneous quench of a system to absolute 

zero: we continuously remove energy from the system until we cannot remove any more. 

Line searches 

It is very inefficient to implement the above equation because one must take 𝑠 to infinity, and 

because the closer we get to the minimum, the slower we are to converge due to the fact that 

the forces grow increasingly small.  A number of much more efficient methods are available.  

These typically use a so-called line search as a part of the overall approach.  A line search simply 

says to find a minimum along one particular direction in coordinate space, 𝐝𝑁.  In two dimen-

sions, 

 

The procedure for a line search is broken into two parts. 

1. Start with an initial set of coordinates 𝐫0
𝑁 and a search direction 𝐝𝑁, chosen to be in the 

downhill direction of the energy surface. 

2. Let 𝐫1
𝑁 = 𝐫0

𝑁.  Then, find two more coordinates 𝐫2
𝑁 = 𝐫0

𝑁 + 𝛿𝐝𝑁 and 𝐫3
𝑁 = 𝐫0

𝑁 + 2𝛿𝐝𝑁 by 

taking small steps 𝛿 along the search direction.  𝛿 should be chosen to be small relative 

to the scales of energy changes relative to particle coordinates. 

3. Is 𝑈(𝐫3
𝑁) > 𝑈(𝐫2

𝑁)?  If so, the three coordinates bracket a minimum and we should 

move to the next part of the algorithm.   

4. If not, we need to keep searching along this direction.  Let 𝐫1
𝑁 ← 𝐫2

𝑁 , 𝐫2
𝑁 ← 𝐫3

𝑁, and 𝐫3
𝑁 ←

𝐫3
𝑁 + 𝛿𝐝𝑁.  Go back to step 3. 

The second part of the algorithm consists of finding the minimum once we’ve bracketed it.  One 

possibility is to bisect pairs of coordinates: 

1. Find a new coordinate 𝐫4
𝑁.  If |𝐫1

𝑁 − 𝐫2
𝑁| > |𝐫2

𝑁 − 𝐫3
𝑁|, pick 𝐫4

𝑁 =
1

2
(𝐫1

𝑁 + 𝐫2
𝑁).  Otherwise, 

pick 𝐫4
𝑁 =

1

2
(𝐫2

𝑁 + 𝐫3
𝑁). 

𝐝𝑁 
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2. Of the four coordinates (𝐫1
𝑁, 𝐫2

𝑁 , 𝐫3
𝑁 , 𝐫4

𝑁) pick new values for (𝐫1
𝑁, 𝐫2

𝑁, 𝐫3
𝑁) from these that 

most closely bracket the minimum. 

3. Go back to step 1 until the successive values of the energies found at each new 𝐫4
𝑁 

changes by less than some fractional tolerance, typically 1 in 106 – 108. 

 

An alternative to step 1 here, which converges faster, is to use the three points (𝐫1
𝑁, 𝐫2

𝑁 , 𝐫3
𝑁) to fit 

a parabola and find the coordinates at the minimum from this approximation: 

𝑑12 = |𝐫2
𝑁 − 𝐫1

𝑁|        𝑑13 = |𝐫3
𝑁 − 𝐫1

𝑁| 

Δ𝑈12 = 𝑈(𝐫2
𝑁) − 𝑈(𝐫1

𝑁)       Δ𝑈13 = 𝑈(𝐫3
𝑁) − 𝑈(𝐫1

𝑁) 

𝐫4
𝑁 = 𝐫1

𝑁 +
1

2
(

𝐫2
𝑁 − 𝐫1

𝑁

|𝐫2
𝑁 − 𝐫1

𝑁|
) (

𝑑13
2 Δ𝑈12 − 𝑑12

2 Δ𝑈13

𝑑13Δ𝑈12 − 𝑑12Δ𝑈13
) 

Steepest descent with line search 

The steepest descent approach can be made more efficient with a line search: 

1. From the current set of coordinates, compute the forces 𝐟𝑁.  Choose the search direction 

to be equal to 𝐝𝑁 = 𝐟𝑁, the negative gradient of the potential energy surface. 

2. Perform a line search to find the minimum along 𝐝𝑁. 

3. Compute the new set of forces at the configuration found in point 2 and a new search 

direction from them.  

4. Repeat step 2 until the minimum energy found with each iteration no longer changes by 

some fractional tolerance, typically 1 in 108. 

progress along 𝐝𝑁 

𝑈(𝐫𝑁) 

1 
1 

3 

2 
3 4 

2 

progress along 𝐝𝑁 

1 
 

3 
3 

2 
1 4 

2 
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Conjugate-gradient method 

For long, narrow valleys in the PEL, the steepest descent + line search method results in a large 

number of zigzag-type motions as one approaches the minimum.  This is because the approach 

continuously overcorrects itself when computing the new search direction with each iteration 

(new line search).  Instead, a more efficient approach is to use the conjugate gradient (CG) 

method. 

The CG approach differs only in the choice of a new search direction with each iteration in step 

3.  Like the steepest descent + line search approach, we use the gradient of the energy surface.  

In addition, however, we use the previous search direction as well.  The CG method chooses 

search directions that are conjugate (perpendicular) to previous gradients found.  A new search 

direction at the 𝑖th iteration is found using 

𝐝𝑖
𝑁 = 𝐟𝑖

𝑁 + 𝛾𝑖𝐝𝑖−1
𝑁  

with 

𝛾𝑖 =
𝐟𝑖
𝑁 ⋅ 𝐟𝑖

𝑁

𝐟𝑖−1
𝑁 ⋅ 𝐟𝑖−1

𝑁  

Here, the dot product signifies the 3N-dimensional vector multiplication: 

𝐟𝑁 ⋅ 𝐟𝑁 = 𝑓𝑥,1
2 + 𝑓𝑦,1

2 + 𝑓𝑧,1
2 + 𝑓𝑥,2

2 + ⋯+ 𝑓𝑧,𝑁
𝑁  

For 𝑛-dimensional quadratic functions, the CG approach converges exactly to the minimum in 𝑛 

iterations (e.g., 𝑛 line search operations).   

An alternative equation for 𝛾 is typically used in molecular modeling, as it has better convergence 

properties: 

𝛾𝑖 =
(𝐟𝑖

𝑁 − 𝐟𝑖−1
𝑁 ) ⋅ 𝐟𝑖

𝑁

𝐟𝑖−1
𝑁 ⋅ 𝐟𝑖−1

𝑁  
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Newton and Quasi-Newton methods 

Location of minima can be enhanced by using second derivative information.  Consider the PEL 

in the vicinity of a minimum.  For the sake of simplicity, we will consider a one-dimensional func-

tion 𝑈(𝑥).  We can Taylor expand 𝑈(𝑥) and its derivative to second order: 

𝑈(𝑥) = 𝑈(𝑥0) + (𝑥 − 𝑥0)
𝑑𝑈(𝑥0)

𝑑𝑥
+

(𝑥 − 𝑥0)
2

2

𝑑2𝑈(𝑥0)

𝑑𝑥2
… 

𝑑𝑈(𝑥)

𝑑𝑥
=

𝑑𝑈(𝑥0)

𝑑𝑥
+ (𝑥 − 𝑥0)

𝑑2𝑈(𝑥0)

𝑑𝑥2
… 

Neglecting higher terms, we can solve for the point at which the derivative is zero: 

𝑥 = 𝑥0 − (
𝑑𝑈(𝑥0)

𝑑𝑥
)(

𝑑2𝑈(𝑥0)

𝑑𝑥2
)

−1

 

For quadratic functions, this relation will find the minimum after only a single application.  For 

other functions, this equation defines an iterative procedure whereby the minimum can be lo-

cated through successive applications of it (each time the function being approximated as quad-

ratic):  

𝑥𝑖+1 = 𝑥𝑖 − (
𝑑𝑈(𝑥𝑖)

𝑑𝑥
)(

𝑑2𝑈(𝑥𝑖)

𝑑𝑥2
)

−1

 

This is the Newton-Raphson iteration scheme for finding stationary points.  The above procedure 

will converge to both minima and saddle points.  To converge to minima, one must first move to 

a point on the PEL where the energy landscape has positive curvature in every direction. 

For multidimensional functions 𝑈(𝐫𝑁) the update equation above involves an inverse of the Hes-

sian matrix of second derivatives: 

𝐫𝑖+1
𝑁 = 𝐫𝑖

𝑁 − ∇𝑈 ⋅ 𝐇𝑖
−1 

= 𝐫𝑖
𝑁 + 𝐟𝑖

𝑁 ⋅ 𝐇𝑖
−1 

To implement this method in simulation requires computation of the 3𝑁 × 3𝑁 Hessian matrix 

and its inverse with each iteration step.  For even small systems, this task can become compute- 

and memory-intensive.   

To remedy these issues, several quasi-Newton methods are available.  The distinctive feature of 

these approaches is that they generate approximations to the inverse Hessian; upon each itera-

tion, these approximations grow increasingly accurate.  These approximations are generated 

from the force array.  The most popular of these in use with molecular modeling methods is the 
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Limited Broyden-Fletcher-Goldfarb-Shanno (LBFGS) approach.  Implementations of this method 

can be found at online simulation code databases.  

In general, Newton and quasi-Newton methods are more accurate and efficient than the conju-

gate gradient approach; however, both are widely used in the literature.  

Locating global energy minima 
Methods to find global potential energy minima are actively researched and have important ap-

plications in crystal and macromolecular structure prediction.  The global minimum problem is 

much more challenging as it requires a detailed search of the entire PEL and it is difficult if not 

impossible to know a priori when the global minimum has been found (unless the entire surface 

has been explored exhaustively).   

Typically global-minimizers combine local minimization with various other methods to selectively 

explore low-energy regions of the PEL and with bookkeeping routines to remember which parts 

have been searched and what low-energy configurations have been found.  This search is usually 

partially stochastic in nature, often leveraging the molecular dynamics and Monte Carlo tech-

niques we will discuss in later lectures. 

Normal mode analysis 

For minima 

Consider the PEL in the vicinity of a minimum.  Let’s write the coordinates of all the atoms about 

this minimum be 

𝐫0
𝑁 

If we consider very small perturbations about these coordinates,  

𝐫𝑁 = 𝐫0
𝑁 + Δ𝐫𝑁 

we can Taylor expand the potential energy to second order.  That is, we can perform a harmonic 

approximation to the PEL about a minimum: 

𝑈(𝐫𝑁) = 𝑈(𝐫0
𝑁) +

Δ𝑥1
2

2

𝑑2𝑈(𝐫0
𝑁)

𝑑𝑥1
2 +

Δ𝑥1Δ𝑦1

2

𝑑2𝑈(𝐫0
𝑁)

𝑑𝑥1𝑑𝑦1
+ ⋯+

Δ𝑧𝑁
2

2

𝑑2𝑈(𝐫0
𝑁)

𝑑𝑧𝑁
2  

Notice that all of the first-order terms in the Taylor expansion are zero by the fact that 𝑈(𝐫0
𝑁) is 

a minimum.  A shorter way of writing this is in matrix form using the Hessian: 
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Δ𝑈 =
1

2

[
 
 
 
 
 
Δ𝑥1

Δ𝑦1

Δ𝑧1

Δ𝑥2

⋮
Δ𝑧𝑁]

 
 
 
 
 
𝑇

[
 
 
 
 
 
 
 

𝑑2𝑈

𝑑𝑥1
2

𝑑2𝑈

𝑑𝑥1𝑑𝑦1
⋯

𝑑2𝑈

𝑑𝑥1𝑑𝑧𝑁

𝑑2𝑈

𝑑𝑦1𝑑𝑥1

𝑑2𝑈

𝑑𝑦1𝑑𝑦1
⋯

𝑑2𝑈

𝑑𝑦1𝑑𝑧𝑁

⋮ ⋮ ⋱ ⋮
𝑑2𝑈

𝑑𝑧𝑁𝑑𝑥1

𝑑2𝑈

𝑑𝑧𝑁𝑑𝑦1
⋯

𝑑2𝑈

𝑑𝑧𝑁𝑑𝑧𝑁]
 
 
 
 
 
 
 

[
 
 
 
 
 
Δ𝑥1

Δ𝑦1

Δ𝑧1

Δ𝑥2

⋮
Δ𝑧𝑁]

 
 
 
 
 

 

which can be written in more compact form: 

𝑈 = 𝑈0 +
1

2
𝐪𝑇𝐇𝐪 

where 𝑈0 = 𝑈(𝐫0
𝑁) and 𝐪 = Δ𝐫𝑁.  Keep in mind that the Hessian is evaluated at 𝐫0

𝑁. 

We can use a trick of mathematics to simplify the analysis, by diagonalizing the Hessian matrix 

𝐇.  Notice that 𝐇 is a symmetric matrix, since the order in which the second derivatives are taken 

doesn’t matter.  That property means that we can write 

𝐇 = 𝐏𝑇𝐃𝐏 

where 𝐃 is a diagonal matrix of eigenvalues: 

𝐃 = [

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑁

] 

and 𝐏 is a matrix whose rows are eigenvectors of 𝐇. 

Then, 

𝑈 = 𝑈0 +
1

2
𝐪𝑇𝐏𝑇𝐃𝐏𝐪 

= 𝑈0 +
1

2
(𝐏𝐪)𝑇𝐃(𝐏𝐪) 

= 𝑈0 +
1

2
𝐬𝑇𝐃𝐬 

In the last line, we defined a new set of 3𝑁 coordinates, instead of 𝐫 (𝐪), that consists of linear 

combinations of the atomic positions: 

𝐬 = 𝐏𝐪 

= 𝐏𝐫𝑁 − 𝐏𝐫0
𝑁 
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Physically, the new coordinates 𝐬 correspond to projecting the atomic positions on a new set of 

axes given by the eigenvectors of the Hessian. 

Using the above Taylor expansion, the fact that 𝐃 is a diagonal matrix means that the energy is a 

simple a sum of 3𝑁 independent harmonic oscillators along the new directions 𝐬: 

𝑈 = 𝑈0 +
1

2
∑𝜆𝑖𝑠𝑖

2

3𝑁

𝑖=1

 

The physical interpretation of this result is the following.  Starting from the minimum and at low 

temperatures, the system oscillates about 𝐫0
𝑁.  The eigenvectors of 𝐇 give the normal modes 

along which the system fluctuates, that is, the directions and collective motions of all of the at-

oms that move in harmonic fashion for each oscillator.  There are 3𝑁 of these modes correspond-

ing to the 3𝑁 eigenvectors.   

The eigenvalues give the corresponding force constants and can be related to the frequencies of 

fluctuations.  If all atomic masses are the same, 𝑚, then 

𝜔𝑖 = √𝜆𝑖 𝑚⁄  

In the case that the atomic masses differ, a slightly more complicated equation is used [Case, 

Curr. Op. Struct. Biol. 4, 285 (1994)]. 

Regarding the eigenvalues, 

• All will be positive or zero, since the energy must increase as one moves away from the 

minimum.  Thus, the frequencies are all real. 

• If the system has translational symmetry (i.e., atoms can collectively be moved in the x, 

y, and z directions without a change in energy), then three of the eigenvalues will be zero. 

• If the system also has rotational symmetry (i.e., atoms can be collectively rotated about 

the x, y, and z axes), then an additional three eigenvalues will be zero. 

The spectrum of different normal mode frequencies informs one of motions on different time-

scales: 

• High-frequency modes signify very fast degrees of freedoms.  The corresponding 

eigenmodes typically correspond to bond stretching motions, if present.  High-frequency 

modes tend to be localized, i.e., involving only a few atoms. 
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• Low-frequency modes indicate slow degrees of freedoms.  These modes tend to be col-

lective, involving the cooperative movement of many atoms. 

For higher-order stationary points 

Minima in the PEL are not the only points that satisfy the relation: 

∇𝑈(𝐫𝑁) = 0 

Saddle points are also defined by this condition.  At a saddle point, the slope of the PEL is zero 

but there exists at least one direction that will correspond to a decrease in the energy of a system.  

Recall that the PEL is a hypersurface in 3𝑁 + 1 dimensional space.  This means that, at any point 

on the PEL, there are 3𝑁 orthogonal directions that we can take.  As a result, saddles can be 

categorized by the number of directions that lead to a decrease in potential energy, called the 

saddle order.  First order saddles have one direction of negative curvature, second have two, and 

so on and so-forth.  A zeroth order saddle is a minimum and a 3𝑁th order saddle is a maximum. 

An identical Taylor-expansion and normal mode analysis can be performed at a saddle point in 

the potential energy surface: 

• Unlike minima, saddles will have one or more eigenvalues of the Hessian that are nega-

tive.  These correspond to a decrease in the potential energy as one moves away from 

the saddle point. 

• The corresponding eigenvectors give the saddle directions that result in this energy de-

crease. 

• The number of negative eigenvalues gives the order of a saddle. 

Such considerations can be useful when examining activated processes and barrier-crossing 

events in molecular systems. 


