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Flat histogram sampling techniques ChE210D 

Today's lecture: basic, general methods for computing entropies and free ener-

gies from histograms taken in molecular simulation, with applications to phase 

equilibria. 

Flat-histogram sampling  
In the past two decades, so-called flat histogram methods have become major tools for compu-

ting free energies and phase equilibria.  These methods are designed to construct an extended 

ensemble that generates a uniform or flat distribution in one or more parameters or reaction 

coordinates.  By doing so, two goals are achieved: 

• broad sampling and good statistics for the flat histogram parameters, which expands the 

range of conditions at which reweighting can be effectively performed 

• computation of free energies or entropies along the flat histogram parameters, through 

a connection between them and the presence of a flat distribution 

Such methods are often used in place of umbrella sampling approaches in Monte Carlo and mo-

lecular dynamics simulations because they automatically determine the weight functions, instead 

of requiring a specific form (e.g., a harmonic potential).  Below we discuss a specific example in 

the grand-canonical ensemble; however, these approaches are general to any simulation ensem-

ble and parameter of interest. 

Example: Grand-Canonical Monte Carlo 

Consider a grand canonical MC simulation with 𝜇 = 𝜇1, where both the energy and particle num-

ber fluctuate.  The probability of seeing a particular configuration is given by 

℘(𝐫𝑁, 𝑁) ∝
𝑒−𝛽𝑈+𝛽𝜇1𝑁

Λ(𝑇)3𝑁𝑁!
 

If we integrate this expression over all configurations at a particular particle number, we can find 

the distribution in 𝑁: 

℘(𝑁) ∝ ∫ ℘(𝐫𝑁, 𝑁)𝑑𝐫𝑁 

= ∫
𝑒−𝛽𝑈+𝛽𝜇1𝑁

Λ(𝑇)3𝑁𝑁!
𝑑𝐫𝑁 

= 𝑒𝛽𝜇1𝑁 ∫
𝑒−𝛽𝑈

Λ(𝑇)3𝑁𝑁!
𝑑𝐫𝑁 
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= 𝑒𝛽𝜇1𝑁−𝛽𝐴(𝑇,𝑉,𝑁) 

That is, the particle number distribution involves the Helmholtz free energy 𝐴(𝑇, 𝑉, 𝑁).  We will 

actually drop the variables 𝑇, 𝑉 since these do not fluctuate during the simulation: 

℘(𝑁) ∝ 𝑒𝛽𝜇1𝑁−𝛽𝐴(𝑁) 

Now consider that we have specified a temperature and chemical potential that places us at co-

existence between a liquid and vapor phase.  At coexistence, this distribution might look some-

thing like: 

 

The two probability peaks correspond to the liquid and gas phase.  Notice that there is an inter-

mediate value of 𝑁 with much lower probability.  The probability that the system will visit this 

value of 𝑁 is 

℘(𝑁‡) ∝ 𝑒−𝛽Δ𝐴‡
 

Small free energy differences can make the probability of intermediate values of 𝑁 very, very tiny 

due to the exponential.  Thus, even though the system is at coexistence per the bimodal distri-

bution above, the implication is that fluctuations that traverse intermediate densities are very 

rare.   

In a GCMC simulation, this means that we would rarely see the system interconvert between low 

and high particle numbers due to the low probability of visiting intermediate particle number 

states between them.  We would have an extremely difficult time equilibrating a GCMC simula-

tion at these conditions since it almost certainly would visit only one of the two phases during 

the simulation run, and not both. 

We can use an extended ensemble to enhance the probability of intermediate states.  One way 

to do this would be to modify the ensemble probabilities so that we would obtain a uniform 

ln ℘(𝑁) 𝛽Δ𝐴‡ 

𝑁‡ 
𝑁 
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distribution or a flat histogram of particle numbers, between two predetermined limits 𝑁min and 

𝑁max.  Typically we pick 𝑁min = 1 and 𝑁max to be well beyond the particle number associated 

with the liquid density. 

To do this, we can add a weighting function to the ensemble probabilities that depends on 𝑁: 

℘w(𝐫𝑁 , 𝑁) ∝
𝑒−𝛽𝑈+𝛽𝜇1𝑁+𝜂(𝑁)

Λ(𝑇)3𝑁𝑁!
 

This is the function that we use in the determination of our acceptance criteria.  Following 

through the detailed balance equation, we find that: 

𝑃12
acc = min [1,

𝑉

𝑁 + 1
𝑒−𝛽Δ𝑈+𝛽𝜇1

′ +Δ𝜂]       for insertions 

𝑃12
acc = min [1,

𝑁

𝑉
𝑒−𝛽Δ𝑈−𝛽𝜇1

′ +Δ𝜂]         for deletions 

In each case, Δ𝜂 = 𝜂(𝑁2) − 𝜂(𝑁1). 

Choice of weighting function and reweighting procedure 

How do we pick the function 𝜂(𝑁)?  This function would be tabulated as an array in our simula-

tion and would be defined in the range [𝑁min, 𝑁max].  We want to pick this function so that our 

ultimate probability distribution in 𝑁 looks flat: 

 

We can figure out what we need to pick for 𝜂(𝑁) by examining the expected distribution in the 

weighted ensemble: 

℘w(𝑁) ∝ ∫ ℘w(𝐫𝑁 , 𝑁)𝑑𝐫𝑁 

= 𝑒𝛽𝜇1𝑁−𝛽𝐴(𝑁)+𝜂(𝑁) 

ln ℘w(𝑁) 

𝑁 𝑁min 𝑁max 
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We want this distribution to be flat, ℘w(𝑁) = const.  This gives us a way to solve for 𝜂(𝑁): 

𝜂(𝑁) = 𝛽𝐴(𝑁) − 𝛽𝜇1𝑁 + const 

Notice two important aspects of this result: 

• We do not need to know the additive constant in 𝜂(𝑁), since the acceptance criterion 

depends only upon differences in this function at different values of 𝑁.  Ultimately this is 

because additive shifts in 𝜂(𝑁) do not affect microstate probabilities, via the normaliza-

tion condition.  Typically we simply set 𝜂(𝑁min) = 0 as a working assumption. 

• To find 𝜂(𝑁) that gives a flat histogram, we need to know the Helmholtz free energy as a 

function of 𝑁.  This may seem like a difficult task.  In practice, however, this connection 

provides us with a way to determine 𝐴(𝑁): given a simulation with a trial function 𝜂(𝑁), 

if our biased simulation produces a uniform distribution in 𝑁, then we have computed 

the true 𝐴(𝑁).   Various flat histogram techniques discussed below enable us to compute 

𝐴(𝑁) based on this connection.  

Let’s say that we find some approximate 𝜂(𝑁) that gives rise to the distribution 

 

Even though this distribution is not totally flat, we still sample the intermediate values of 𝑁 with 

much higher probability and our simulation will likely alternate between liquid and vapor densi-

ties with greater frequency than would be present in the unweighted ensemble.  As a result, our 

simulation reaches equilibrium faster and we get good statistics at all particle numbers. 

We measure the function ℘w(𝑁) from a histogram.  Now, we want to convert the measured 

℘w(𝑁) back to the unweighted ℘(𝑁), to compute the expected distribution (and averages) in 

the normal grand-canonical ensemble: 

℘(𝐫𝑁, 𝑁) ∝ 𝑒−𝜂(𝑁)℘w(𝐫𝑁, 𝑁) 

ln ℘w(𝑁) 

𝑁 𝑁min 𝑁max 
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Integrating over the particle positions, 

℘(𝑁) ∝ 𝑒−𝜂(𝑁)℘w(𝑁) 

Using this approach, we could reweight to different chemical potentials than the original chemi-

cal potential.  In the unweighted ensemble, 

℘(𝑁; 𝜇2) ∝ ℘(𝑁; 𝜇1)𝑒𝛽(𝜇2−𝜇1) 

Making the above substitutions: 

℘(𝑁; 𝜇2) ∝ ℘w(𝑁; 𝜇1)𝑒−𝜂(𝑁)+𝛽(𝜇2−𝜇1) 

The constant of proportionality is given by the normalization condition.  This equation enables 

the following general procedure: 

• Specify a chemical potential 𝜇1 and approximate weighting function 𝜂(𝑁) ≈ 𝛽𝐴(𝑁) −

𝛽𝜇1𝑁. 

• Perform a simulation in the weighted ensemble and measure ℘w(𝑁; 𝜇1) using a histo-

gram. 

• By using a weighted ensemble with a roughly flat distribution in 𝑁, we are accumulating 

good statistics in our histogram for a wide range of 𝑁 values.  Such would not be the case 

if we performed a traditional GCMC simulation, which has a narrowly peaked distribution 

of 𝑁. 

• Use the reweighting equation to find the true ℘(𝑁; 𝜇2) at any arbitrary chemical poten-

tial 𝜇2.  The quality of the reweighted distribution is limited only by regions where the 

measured ℘w(𝑁; 𝜇1) has few histogram entries. 

Ultimately this approach enables us to find conditions of phase equilibrium to high accuracy: we 

tune the reweighting chemical potential 𝜇2 until the weight under the two peaks in the probabil-

ity distribution is equal: 
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The multicanonical method 

How do we find the optimal weighting function 𝜂(𝑁) such that a histogram of 𝑁 in the weighted 

ensemble is flat?  Berg and Neuhaus in 1992 devised an iterative solution to this problem called 

the multicanonical method.  The basic idea is to perform a serial series of 𝐽 simulations in which 

the weighting function is updated after each: 

• Consider simulations number 𝑗 and 𝑗 + 1.   

• We perform simulation 𝑗 using weighting function 𝜂𝑗(𝑁) and measure ℘𝑗
w(𝑁). 

• If ℘𝑗
w(𝑁) is flat, then 𝜂𝑗(𝑁) has converged and we are done. 

• If it is not flat, we use deviations of ℘𝑗
w(𝑁) to update 𝜂𝑗(𝑁) to get 𝜂𝑗+1(𝑁). 

• The process is repeated until convergence. 

We can derive a simple update rule for extracting 𝜂𝑗+1(𝑁) from 𝜂𝑗(𝑁) by comparing the ex-

pected weighted ensemble distributions: 

℘𝑗
w(𝑁) ∝ ℘(𝑁)𝑒𝜂𝑗(𝑁) 

℘𝑗+1
w (𝑁) ∝ ℘(𝑁)𝑒𝜂𝑗+1(𝑁) 

Dividing these two equations and taking the logarithm gives, 

ln ℘𝑗+1
w (𝑁) − ln ℘𝑗

w(𝑁) = 𝜂𝑗+1(𝑁) − 𝜂𝑗(𝑁) + const 

We demand that ℘𝑗+1
w (𝑁) = const so that we can find the optimal 𝜂𝑗+1(𝑁) at the next iteration 

of the weighting function.  Applying this constraint and rearranging, 

ln ℘(𝑁; 𝜇2) 

𝑁 

𝜇2 < 𝜇coexist(𝑇) 

𝜇2 = 𝜇coexist(𝑇) 

𝜇2 > 𝜇coexist(𝑇) 
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𝜂𝑗+1(𝑁) = 𝜂𝑗(𝑁) − ln ℘𝑗
w(𝑁) + const 

This equation provides us with an update rule for determining the next weighting function upon 

each iteration.  Note that, 

• We can only know the weights to within an additive constant.  This is not a problem, 

however, because only weight differences appear in the acceptance criterion.  Typically 

we demand 𝜂(𝑁min) = 0 with each of these updates. 

• If ℘𝑗
w(𝑁) = const, then every value in the weights is shifted by the same amount.  Since 

this effectively only serves to change the arbitrary additive constant, it therefore leaves 

the weights unchanged.  This is a crucial feedback property of the method: if we measure 

a flat histogram, then we have converged to the desired 𝜂(𝑁). 

Zero-entry bins 

When we measure ℘𝑗
w(𝑁), we use a histogram of counts 𝑐𝑗(𝑁).  However, this histogram can 

lead to a zero probability in bins that have no counts.  This would make the update equation 

above ill-defined due to the logarithm term.  A statistical analysis by Smith and Bruce [J. Phys. A, 

1995] shows that the following update equation is a more reliable statistical estimator and avoids 

this problem: 

𝜂𝑗+1(𝑁) = 𝜂𝑗(𝑁) − ln[𝑐𝑗(𝑁) + 1] + const 

Convergence 

Several iterations can be required for convergence.  The following shows the results for four it-

erations using the Lennard-Jones system at 𝑉 = 125 and 𝜇′ = −3.7.   
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Note that, even if the 𝜂(𝑁) is not fully converged, a “flat enough” histogram can be used to 

compute the unweighted average via 

℘(𝑁; 𝜇2) ∝ ℘w(𝑁; 𝜇1)𝑒−𝜂(𝑁)+𝛽(𝜇2−𝜇1) 

Error analysis 

The multicanonical approach provides a way to estimate 𝜂(𝑁) that gives a fairly flat histogram.  

In principle this method should give 𝜂(𝑁) = 𝛽𝐴(𝑁) − 𝛽𝜇1𝑁 + const for a perfectly flat histo-

gram.  Thus, we might be able to estimate from the final iteration 

𝐴(𝑁) = 𝜇1𝑁 + 𝑘𝐵𝑇𝜂𝐽(𝑁) + const 

In practice, the multicanonical method is not able to resolve 𝜂(𝑁) to sufficient statistical accuracy 

so that we can determine 𝐴(𝑁) to high quality.  Each iteration introduces statistical error into 

this estimate since the histograms employed have a finite number of counts.   

Wang-Landau sampling  

The Wang-Landau method [Wang and Landau, PRL 86, 2050 (2001); PRE 64, 056161] is a recent 

approach to estimating 𝜂(𝑁) to high statistical accuracy.  It overcomes some of the statistical 

problems with the multicanonical method and has been rapidly adopted as one of the major tools 

in flat histogram algorithms.  Our discussion here entails a slightly different presentation than 

the original formulation, for clarity in connecting the approach to the current example. 
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In this approach, we do not iterate over different simulations to find the optimal 𝜂(𝑁) that gives 

a flat histogram.  Rather, we modify this function at every MC step in a way that enforces a flat 

distribution and allows it to converge to its optimal value.  After every MC move, we update our 

running estimate for 𝜂(𝑁) via 

𝜂(𝑁) ← 𝜂(𝑁) − 𝑔 

Here, 𝑔 is termed the modification factor.  It is a number that we choose so as to gauge the rate 

at which the weighting function is updated.  Typically, simulations begin with 𝑔 = 1. 

Think about what the behavior of this update would be: 

• Values of 𝑁 that are oversampled will have their weights decreased, on average, more 

than values of 𝑁 that are undersampled, since there will be more updates to them 

• When all particle numbers are sampled with equal probability, on average, we will update 

𝜂(𝑁) uniformly across all 𝑁.  This results in a net additive shift in the weights, which ulti-

mately doesn’t affect the microstate probabilities.  Thus, if we are sampling a uniform 

distribution in 𝑁, the weights are not effectively modified.  In any case, we always demand 

that 𝜂(𝑁min) = 0 by shifting the curve. 

Thus, the Wang-Landau method enforces a kind of feedback loop between the sampled distribu-

tion of 𝑁 and the determination of the weighting function. 

Modification factor schedule 

Still, one must address two important issues: 

• Modifying the weighting factor at every step breaks detailed balance, because it changes 

the state probabilities with time. 

• We cannot resolve 𝜂(𝑁) to differences less than the modification factor 𝑔. 

To resolve the issues, Wang and Landau proposed that 𝑔 → 0 over the course of the simulation 

run.  They suggested the following procedure: 

1. Set 𝜂(𝑁) = 0 and 𝑔 = 1 initially. 

2. Perform a simulation, updating 𝜂(𝑁) at every simulation step using the modification fac-

tor.  Start a new histogram of 𝑁 and collect observations throughout the run. 

3. When the histogram is “flat enough”, scale down the value of the modification factor ac-

cording to: 
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𝑔 ←
1

2
𝑔 

4. Re-zero the histogram counts and return to step 2.  Continue until 𝑔 is very small.  Typi-

cally, we stop when 𝑔 < 10−6 − 10−8.  

The histogram can be determined to be flat enough using the 80% rule: when the number of 

counts in the least-visited histogram bin is no less than 80% of the average number of counts 

over all bins, the histogram can be considered “flat”. 

In this way, the simulation proceeds in stages of decreasing values of the modification factor.  

Initial stages help to rapidly build a good estimate of 𝜂(𝑁), while later stages refine this calcula-

tion to increasing precision and satisfy detailed balance asymptotically. 

Reweighting of results 

At the end of the simulation, we have computed 𝜂(𝑁) to such high accuracy that we can use it 

directly to perform reweighting.  That is, we assume that ℘w(𝑁) = const: 

℘(𝑁; 𝜇2) ∝ 𝑒−𝜂(𝑁)+𝛽(𝜇2−𝜇1) 

In fact, 𝜂(𝑁) provides a high-quality estimate of the free energy: 

𝐴(𝑁) = 𝜇1𝑁 + 𝑘𝐵𝑇𝜂(𝑁) + const 

Choice of initial state 

Since the Wang-Landau method automatically and dynamically determines the weighting func-

tion, it is typical to choose the initial state of the simulation so that the only factor appearing in 

the probability distribution is the weighting function itself.  In this case, we would choose 𝜇1 = 0 

so that: 

𝐴(𝑁) = 𝑘𝐵𝑇𝜂(𝑁) + const 

and the reweighting equation becomes 

℘(𝑁; 𝜇2) ∝ 𝑒−𝜂(𝑁)+𝛽𝜇2 

Transition matrix methods 

The most recent methods to have emerged in biased simulations are those based on transition 

matrix estimators.   These have been shown to be very easy to implement and to provide very 

high quality estimates of free energies, perhaps better than the Wang-Landau approach.  Erring-

ton and coworkers have pioneered the application of these methods to fluid phase equilibria 

[Erringron, JCP 118, 9915 (2003)].  Transition matrix approaches are applied to Monte Carlo sim-

ulations because they rely on the detailed balance equation. 
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The idea of transition matrix estimators is that we measure macrostate transition probabilities 

and use these to compute underlying free energies.  A macrostate transition probability is simply 

the probability associated with transitions of the system between different values of some mac-

roscopic parameter.  In this example, we measure the conditional probability that a system will 

make a transition between one value 𝑁1 to another value 𝑁2, given that it initially has 𝑁1 parti-

cles: 

Π(𝑁1 → 𝑁2) 

Notice that, in a grand canonical simulation, we only make incremental steps in 𝑁.  Thus, 

Π(𝑁1 → 𝑁2) = 0 if 𝑁2 is not one of (𝑁1 − 1, 𝑁1, 𝑁1 + 1).   

Definition of the macroscopic transition probability 

We can relate the macroscopic transition probability to the microscopic ones that we presented 

in the initial discussion of MC simulations: 

Π(𝑁1 → 𝑁2) =
∑ ∑ ℘𝑚𝜋𝑚𝑛𝑛∈{𝑁2}𝑚∈{𝑁1}

∑ ℘𝑚𝑚∈{𝑁1}
 

Here, the sums over microstates 𝑚 and 𝑛 are performed for all states with 𝑁1 and 𝑁2 particles, 

respectively. 

If the microstate transition probabilities obey detailed balance: 

℘𝑚𝜋𝑚𝑛 = ℘𝑛𝜋𝑛𝑚 

then a simple summation of this equation over all 𝑚 and 𝑛 shows that the macrostate transition 

probabilities also obey detailed balance: 

℘(𝑁1)Π(𝑁1 → 𝑁2) = ℘(𝑁2)Π(𝑁2 → 𝑁1) 

Estimating free energies from transition matrices 

The equation above allows us to estimate free energies from macroscopic transition probabili-

ties.  We rearrange it according to 

ln
Π(𝑁1 → 𝑁2)

Π(𝑁2 → 𝑁1)
= ln

℘(𝑁2) 

℘(𝑁1)
 

= 𝛽𝜇(𝑁2 − 𝑁1) − 𝛽[𝐴(𝑁2) − 𝐴(𝑁1)] 

Solving for the free energy difference, 

𝐴(𝑁2) − 𝐴(𝑁1) = 𝜇(𝑁2 − 𝑁1) + kB𝑇 ln
Π(𝑁2 → 𝑁1)

Π(𝑁1 → 𝑁2)
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Looking at neighboring particle numbers, 

𝐴(𝑁 + 1) − 𝐴(𝑁) = 𝜇 + kB𝑇 ln
Π(𝑁 + 1 → 𝑁)

Π(𝑁 → 𝑁 + 1)
 

Using this equation, we could map out an entire 𝐴(𝑁) curve by computing free energy differ-

ences at each particle number.  To do that, we would need to measure the relative probabilities 

of seeing transitions between 𝑁1 and 𝑁2.  We can do this using a histogram: 

𝑐𝑁1,𝑁2
= counts of observations of transitions from 𝑁1 to 𝑁2 

Then, 

Π(𝑁1 → 𝑁2) =
𝑐𝑁1,𝑁2

∑ 𝑐𝑁1,𝑁𝑖𝑖
 

We can actually do better than this.  Instead of tallying counts, we can tally the actual acceptance 

probabilities computed for use in the Metropolis criterion: 

𝑐𝑁1,𝑁2
= sums of observations of 𝑃𝑁1,𝑁2

acc  

Computing the weighting function from transition probabilities 

The transition probabilities provide us with a way to periodically update an estimate for 𝜂(𝑁): 

𝜂(𝑁) = 𝛽𝐴(𝑁) − 𝛽𝜇𝑁 + const 

where 𝐴(𝑁) is determined using the above procedure. 

Note that, to determine 𝐴(𝑁) using the transition probabilities, we need to be in the unweighted 

ensemble (since that is what we used to derive the relationship).  If we add a weighting function, 

then it would seem that we need to take this into account.  However, the advantage of this ap-

proach is that we do not need to take this into account if we sum the acceptance probabilities in 

the unweighted ensemble in our transition matrix, and not in the weighted ensemble.  That is, 

we compute two acceptance probabilities.   

For particle additions: 

𝑃12
acc = min [1,

𝑉

𝑁 + 1
𝑒−𝛽Δ𝑈+𝛽𝜇′+Δ𝜂]       → used in acceptance of moves 

𝑃12
acc = min [1,

𝑉

𝑁 + 1
𝑒−𝛽Δ𝑈+𝛽𝜇′

]       → used in updating sums in transition probabilities 

Notice that we don’t include the weight factor in the update of the transition probability matrix.  

This enables us to compute transition probabilities as if we were still in the unweighted ensemble, 
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even though we are actually performing a simulation using a weighting function.  A similar case 

exists for particle deletions. 

Stratification 

When a flat histogram simulation is performed, the system experiences large fluctuations in the 

flat histogram variable.  As such, the correlation time for that variable can be quite large.  In other 

words, it can take the system a very long period of time to explore the complete range of interest 

in the flat histogram.  In our example, this means that the system has a long time scale for trav-

ersing values of 𝑁 between 𝑁min and 𝑁max.  The time it takes for the system to perform a com-

plete walk of particle numbers between the two limits is called the tunneling time. 

The tunneling time in flat histogram simulations can grow to be very long for a wide range 𝑁min 

to 𝑁max.  If the system performs a random walk in 𝑁, we expect 

𝜏tunnel ∝ (𝑁max − 𝑁min)2 

In reality, the walk is not completely random due to correlations, even if the system has a per-

fectly flat distribution in 𝑁.  Typically the tunneling time grows with an exponent greater than 2.  

One way around this problem is to use stratification to determine the underlying free energy or 

entropy function that governs a flat histogram variable.  In stratification, we break the entire 

range of 𝑁 into smaller, overlapping sub-ranges or windows.  Then we perform a separate sim-

ulation in each.  At the end of the run, we know that the underlying free energy estimates should 

be the same to within an unknown additive constant.  We can shift these constants so as to obtain 

overlap. 

Consider that we perform multiple grand canonical simulations for a number of windows each 

with different 𝑁min, 𝑁max.  The simulations would reject moves that took their particle number 

outside of the specified sub-range.  From each, we would then obtain a high-quality estimate of 

𝐴(𝑁): 

𝐴(𝑁) = 𝜇𝑁 + 𝑘𝐵𝑇𝜂(𝑁) + const 

Then, we patch the 𝐴(𝑁) together by shifting to form a master curve: 
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However, the flat histogram approach makes this shifting much easier than the earlier un-

weighted case in which we used Ferrenberg-Swendsen reweighting.  Here, because each value 

of 𝑁 is sampled with the same frequency, we expect the same statistical error in our estimates 

for 𝐴(𝑁) at each value of 𝑁.  This means that we can use a simple least-squares procedure to 

optimally shift each curve so as to obtain overlap. 

Other parameters 

In all of the above examples, we presented flat histogram calculations in the context of a grand 

canonical simulation.  There, we computed a weighting function 𝜂(𝑁) that had a relation with 

the 𝑁-dependence of the underlying Helmholtz free energy 𝐴(𝑁).   

All of these methods presented can be used to compute any arbitrary free energy or entropy 

function, including potentials of mean force like the one presented for umbrella sampling.  In 

general,  

To compute the free energy along a given reaction coordinate, we need to bias 

the simulation to perform flat-histogram sampling along that coordinate. 

The table at the end of this section summarizes the microstate probabilities and reweighting ex-

pression that one might use in a number of different flat-histogram sampling.  Keep in mind that 

the microstate probabilities are used to determine acceptance criteria in Monte Carlo simula-

tions. 

Keep in mind that continuous coordinates, like the energy or a distance-based reaction coordi-

nate, require us to discretize our weighting function, histograms, and reweighting procedure. 

Microscopic order parameters and metadynamics 

For example, let’s imagine that we want to measure a potential of mean force along some micro-

scopic reaction coordinate, 𝐹(𝑧).  This could be the free energy of a molecule approaching a 

𝜇𝑁 + 𝑘𝐵𝑇𝜂(𝑁)

+ const 

𝑁 

𝐴(𝑁) 
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surface, as we discussed in umbrella sampling.  We can define an effective or weighted Hamilto-

nian or potential that includes a biasing term: 

𝑈𝑤(𝐫𝑁) = 𝑈(𝐫𝑁) − 𝑘𝐵𝑇 𝜂(𝑧) 

where 𝑈 is the normal potential and 𝜂(𝑧) is a dimensionless function that captures the bias.  The 

weighted probability distribution is 

℘𝑤(𝐫𝑁) ∝ ℘(𝐫𝑁)𝑒𝜂(𝑧) 

If we integrate over all positions except for the reaction coordinate 𝑧, we find: 

℘𝑤(𝑧) ∝ 𝑒−𝛽𝐹(𝑧)𝑒𝜂(𝑧) 

Thus if we want flat-histogram like sampling in our weighted ensemble such that ℘𝑤(𝑧) = 𝑐𝑜𝑛𝑠𝑡, 

we need: 

𝜂(𝑧) = 𝛽𝐹(𝑧) 

Metadynamics is a method that uses this result to determine the PMF. It was introduced by Laio 

and Parrinello in 2002 and is similar in spirit to the Wang-Landau approach in that it adaptively 

estimates the underlying bias potential (which is an estimate of the PMF).  A major difference 

with the WL approach is that metadynamics does not accumulate counts of observations in a 

discrete biasing potential, but estimates the bias as a sum of Gaussians.  That is, the approach 

periodically drops down Gaussians in the biasing potential centered at the current value of the 

reaction coordinate.  In other words, 

𝜂(𝑧) = ∑ 𝜔 exp (−
(𝑧 − 𝑧(𝑡))

2

2𝜎2
)

𝑡∈{𝑡1,𝑡2,… }

 

Conceptually, the approach looks like the following, taken from “Free-energy calculations with 

metadynamics: Theory and practice” by Bussi and Branduardi (2015): 
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Note here that there are several parameters to choose/tune in the approach: 

• the frequency of adding Gaussians 

• the width of the Gaussians 𝜎 

• the height or magnitude of the Gaussians 𝜔 

In the “well-tempered metadynamics” method, the Gaussian height is systematically reduced 

over time, just as in the Wang Landau approach. 

Metadynamics is widely used, more so than the Wang Landau approach, because it can be easily 

coupled with molecular dynamics.  Since 𝜂(𝑧) is the sum of continuous functions, we can easily 

obtain derivatives of it.   So using our weighted potential, we can derive modified equations of 

motion.  For an atom 𝑖: 

𝐟𝑖
w = −

𝑑𝑈w

𝑑𝐫𝑖
 

= −
𝑑𝑈

𝑑𝐫𝑖
− 𝑘𝐵𝑇

𝑑𝜂(𝑧)

𝑑𝑧

𝑑𝑧

𝑑𝐫𝑖
 

We see that the bias effectively adds an additional force that performs the flat-histogram sam-

pling.  The last term, 𝑑𝑧/𝑑𝐫𝑖, is a purely geometric one and depends on how the reaction coordi-

nate 𝑧 is defined in terms of the atomic coordinates.  For example, if 𝑧 is the z-axis center of mass 

of a collection of atoms: 

𝑧 =
∑ 𝑚𝑗𝑧𝑗𝑗

∑ 𝑚𝑗𝑗
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then we have 

𝑑𝑧

𝑑𝐫𝑖
=

𝑚𝑖

∑ 𝑚𝑗𝑗
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Common flat-histogram ensembles 
 initial ensemble speci-

fied 
flat his-
togram 

variables  

microstate probabilities ideal weighting function 

1 canonical 𝑇1 𝑈 ℘w(𝐫𝑁) ∝ 𝑒−𝛽1𝑈+𝜂(𝑈) 𝜂(𝑈) = 𝛽1𝑈 − 𝑆(𝑈) 

2 grand canonical 𝑇1, 𝜇1 𝑈, 𝑁 ℘w(𝐫𝑁 , 𝑁) ∝ 𝑒−𝛽1𝑈+𝛽1𝜇1𝑁+𝜂(𝑈,𝑁) 𝜂(𝑈, 𝑁) = 𝛽1𝑈 − 𝛽1𝜇1𝑁 − 𝑆(𝑈, 𝑁) 

3 isothermal-isobaric 𝑇1, 𝑃1 𝑈, 𝑉 ℘w(𝐫𝑁, 𝑉) ∝ 𝑒−𝛽1𝑈−𝛽1𝑃1𝑉+𝜂(𝑈,𝑉) 𝜂(𝑈, 𝑉) = 𝛽1𝑈 + 𝛽1𝑃1𝑉 − 𝑆(𝑈, 𝑉) 

4 grand canonical 𝑇1, 𝜇1 𝑁 ℘w(𝐫𝑁, 𝑁) ∝ 𝑒−𝛽1𝑈+𝛽1𝜇1𝑁+𝜂(𝑁) 𝜂(𝑁) = −𝛽1𝜇1𝑁 + 𝛽1𝐴(𝑁; 𝑇1) 

5 isothermal-isobaric 𝑇1, 𝑃1 𝑉 ℘w(𝐫𝑁, 𝑉) ∝ 𝑒−𝛽1𝑈−𝛽1𝑃1𝑉+𝜂(𝑉) 𝜂(𝑉) = 𝛽1𝑃1𝑉 + 𝛽𝐴(𝑉; 𝑇1) 

6 reaction coord. 𝑇1 𝜉 ℘w(𝐫𝑁) ∝ 𝑒−𝛽1𝑈+𝜂(𝜉) 𝜂(𝜉) = 𝛽𝐹(𝜉; 𝑇1) 

 

 initial ensemble reweightable  
conditions 

reweighting expression 

1 canonical 𝑇2 ℘(𝑈; 𝑇2) ∝ ℘w(𝑈)𝑒−(𝛽2−𝛽1)𝑈−𝜂(𝑈) 

2 grand canonical 𝑇2, 𝜇2 ℘(𝑈, 𝑁; 𝑇2, 𝜇2) ∝ ℘w(𝑈, 𝑁)𝑒−(𝛽2−𝛽1)𝑈+(𝛽2𝜇2−𝛽1𝜇1)𝑁−𝜂(𝑈,𝑁) 

3 isothermal-isobaric 𝑇2, 𝑃2 ℘(𝑈, 𝑉; 𝑇2, 𝑃2) ∝ ℘w(𝑈, 𝑉)𝑒−(𝛽2−𝛽1)𝑈−(𝛽2𝑃2−𝛽1𝑃1)𝑉−𝜂(𝑈,𝑉) 

4 grand canonical 𝜇2  (𝑇2 = 𝑇1) ℘(𝑁; 𝜇2) ∝ ℘w(𝑁)𝑒(𝛽2𝜇2−𝛽1𝜇1)𝑁−𝜂(𝑁) 

5 isothermal-isobaric 𝑃2  (𝑇2 = 𝑇1) ℘(𝑉; 𝑃2) ∝ ℘w(𝑉)𝑒−(𝛽2𝑃2−𝛽1𝑃1)𝑉−𝜂(𝑉) 

6 reaction coord. none N/A 

* 𝑆 denotes the dimensionless configurational entropy; 𝐴 denotes the configurational free energy 

** All chemical potentials are relative by a factor of −3𝑘𝐵𝑇 ln Λ(𝑇) 


