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Free energies along reaction coordinates & biased sampling ChE210D 

Today's lecture: biased ensembles in simulations that facilitate sampling along re-

action coordinates, and general methods for extracting free energies along these 

coordinates 

Overview of free energies and biased sampling 
Free energies drive many important processes and are one of the most challenging kinds of quan-

tities to compute in simulation.  Free energies involve sampling at constant temperature, and 

ultimately are tied to summations involving partition functions.  In order to measure free ener-

gies, generally there are two requirements: 

• We must be able to sample the relevant molecular states along the direction that we 

would like to calculate a free energy.  Often we need to introduce a bias to facilitate sam-

pling. 

• We must be able to relate the frequency of different molecular states to the underlying 

free energy of interest. 

Thus we see that sampling (and biased sampling) is intimately related to the measurement of 

free energies.  There are many kinds of free energies that we might compute, but here we first 

consider potentials of mean force.  

Potentials of mean force (PMFs) 

Oftentimes we would like to compute the free energy along some order parameter or reaction 

coordinate of interest.  These are broadly termed potentials of mean force, for reasons we will 

see shortly.  This perspective enables us to understand free-energetic driving forces in many pro-

cesses.  For the purposes of this discussion, we will notate a PMF by 

𝐹(𝜉) 

where 𝜉 is the reaction coordinate of interest.  This coordinate might be, for example: 

• an intra- or intermolecular distance (or combination of distances) 

• a bond or torsion angle 

• a structural order parameter (e.g., degree of crystallinity, number of hydrogen bonds) 
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Let’s motivate things using the example of a protein in aqueous solution interacting with a sur-

face.  The reaction coordinate might be the distance between the center of mass of the protein 

and the surface 𝑧: 

 

The PMF along 𝑧, 𝐹(𝑧) would give the free energy of the system as a function of the protein-

surface distance.  It might look something like: 

 

Remember that free energies dictate frequencies of different system states at equilibrium.  Spe-

cifically, they relate to the probability of observing a particular molecular state: 

℘(𝑧) ∝ 𝑒−𝛽𝐹(𝑧) 

Thus this curve would show us: 

• the preferred distance at which the protein binds to the surface, from the value of 𝑧 at 

the free energy minimum 

𝑧 

𝐹(𝑧) 

𝑧 
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• the free energy change upon binding, from the difference in free energy between the 

minimum and large values of 𝑧 

• the barrier in free energy for binding and unbinding, from the height of the hump 

Importantly, the free energy function does not just include the direct potential energy interac-

tions between atoms in the molecule with atoms in the surface.  It also includes the effects of all 

of the interactions in the solvent molecules.  This may be crucial to the behavior of the system.   

For example, the direct pairwise interactions of an alkane with a silica surface will be the same 

regardless of whether the solvent is water or octanol.  However, the net interaction of the alkane 

and surface will be very different in the two cases due to solvent energies and entropies, and this 

effect is exactly determined by the PMF. 

Calculating the PMF 

We can gain insight into the PMF by recognizing the connection between free energies and prob-

abilities.  Specifically, the PMF determines the relative probability of observing the protein at a 

distance 𝑧 through a Boltzmann factor: 

℘(𝑧) ∝ 𝑒−𝛽𝐹(𝑧) 

℘(𝑧) →
𝑒−𝛽𝐹(𝑧)

∫ 𝑒−𝛽𝐹(𝑧)𝑑𝑧
=

𝑒−𝛽𝐹(𝑧)

𝑍
 

Inverting we then have 

𝐹(𝑧) = −𝑘𝐵𝑇 ln ℘(𝑧) − 𝑘𝐵𝑇 ln 𝑍 = −𝑘𝐵𝑇 ln ℘(𝑧) + 𝑧-independent constant 

Thus if we were able to measure ℘(𝑧) to high accuracy, we would be able to determine the free 

energy along the coordinate 𝑧.  In practice, we represent ℘(𝑧) as a histogram of counts of ob-

servations in our simulation, 𝐻(𝑧), such that 

℘(𝑧) ≈
𝐻(𝑧)

∑𝐻(𝑧)
=

𝐻(𝑧)

𝑛obs
 

Then we have 

𝐹(𝑧) ≈ −𝑘𝐵𝑇 ln 𝐻(𝑧) + 𝑧-independent constant 

But the real challenge in simulation is measuring 𝐹(𝑧) to high accuracy.  This is intimately con-

nected to the form of 𝐹(𝑧) itself.  Consider the following.  If the solute interacts strongly and 

favorably with the surface as shown above, we might expect a probability distribution of the 

coordinate 𝑧 to look something like: 
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If the free energy barrier for a surface-bound solute for escaping is fairly large, we will expect an 

extremely small probability for the system to adopt states other than the bound state.  That is, 

we would almost never see a solute molecule far from the surface in the simulation.  The mole-

cule would spend all of its time near the surface it would be very difficult to measure ℘(𝑧) to 

good accuracy in low-probability regions.  That is, the statistics of our estimate will be very poor: 

𝐻(𝑧) = 0  for many z →     𝐹(𝑧) = ill defined for those 𝑧 

Consider the following: we make 10,000 measurements of 𝑧 in our simulation.  If the free energy 

at the barrier is 𝛽Δ𝐹‡ = 10, then the relative number of counts between the bound state and at 

𝑧‡ is exp(10) = 22,000.  In this case we wouldn’t expect any counts in histogram bins near the 

barrier! 

Umbrella sampling and reweighting 
How then do we ensure good sampling across the 𝑧 coordinate in our simulations?  The solution 

is to bias the sampling, and one of the most common and simplest approaches to doing so is the 

umbrella sampling approach. 

Umbrella sampling 

The umbrella sampling method was developed by Torrie and Valleau in 1977 and since has been 

one of the major approaches for performing simulations along predetermined reaction coordi-

nates.  It is a form of biased sampling that helps overcome the basic challenge above.  It is readily 

applied to both molecular dynamics and Monte Carlo simulations.  Here, we use the protein-

surface for demonstrating the application of the approach; however, keep in mind that umbrella 

sampling can be applied to many, arbitrary reaction coordinates. 

ln ℘(𝑧) −𝛽Δ𝐹‡ 

𝑧‡ 
𝑧 
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For the present example, we want to force the system to explore the entire range of 𝑧.  Therefore, 

we construct multiple simulations where the z-coordinate is restrained to different regimes.  The 

exact procedure is: 

• Perform 𝐽 simulations 𝑗 of the same system. 

• In each simulation, restrain the system to sample a small range of 𝑧 values centered 

around 𝑧𝑗 using (typically) a harmonic penalty or “rubber band”: 

𝑈j(𝐫𝑁) = 𝑈(𝐫𝑁) +
𝑘

2
(𝑧 − 𝑧𝑗)

2
 

where the bias is a form of energy weights that restrain the position, 

𝜂𝑗(𝑧) =
𝑘

2
(𝑧 − 𝑧𝑗)

2
 

• Use a different target value 𝑧𝑗 for each simulation.  The 𝑧𝑗 should span the entire range of 

interest. 

• Measure the biased ensemble distribution ℘𝑗(𝑧) for each simulation using histograms.  

Let 𝑐𝑗(𝑧) denote the counts in simulation 𝑗 for different 𝑧 observations.   

• Unweight and stitch together all of the simulation ℘𝑗(𝑧) to produce the true underlying 

free energy function 𝐹(𝑧) = −𝑘𝐵𝑇 ln ℘(𝑧). 

Form of the biasing potential 

In each simulation, we need to bias the run to sample values of 𝑧 near 𝑧𝑗.  We want to energeti-

cally penalize configurations outside of this range so as to lower their probability weight.  Many 

forms of this penalty can be chosen.  The most common is a harmonic potential: 

𝜂𝑗(𝑧) = −𝛽
𝑘

2
(𝑧 − 𝑧𝑗)

2
 

such that the effective weighted potential is given by 

𝑈j
w(𝐫𝑁) = 𝑈(𝐫𝑁) +

𝑘

2
(𝑧 − 𝑧𝑗)

2
 

Here a value of the force constant must be specified.  Too small a value will not sufficiently bias 

the simulation.  Too large a value will result in a very narrow distribution in the sampled 𝑧 in each 

simulation; this will result in poor overlap between the 𝑧 distributions in each simulation and will 

make hard to patch the unweighted results together with good statistical accuracy.  In practice, 

it can be a trial-and-error process to determine good values for 𝑘. 
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The advantage of the harmonic potential is that it enables us to apply either MD or MC algorithms 

to measure the biased or weighted histogram ℘𝑗
w(𝑧).  In MD, the harmonic term will add an extra 

force to the solute in its z-coordinate.  In MC, this term will modify the energy used in the ac-

ceptance criterion. 

Reweighting concepts 

Even though we run simulations with biases that hold the molecule near individual points in 

space, it is possible to recover the true (unbiased) distribution using reweighting concepts.  Each 

simulation is connected to the unweighted distribution via the following considerations: 

℘𝑗(𝐫𝑁) ∝ 𝑒−𝛽𝑈(𝐫)−𝛽𝜂𝑗(𝑧) 

such that  

℘𝑗
w(𝐫𝑁) ∝ ℘(𝐫𝑁)𝑒−𝛽𝜂𝑗(𝑧) 

or inverting 

℘(𝐫𝑁) ∝ ℘𝑗
w(𝐫𝑁)𝑒𝛽𝜂𝑗(𝑧) 

Integrating out all degrees of freedom except 𝑧, 

℘(𝑧) ∝ ℘𝑗
w(𝑧)𝑒𝛽𝜂𝑗(𝑧) 

Taking the logarithm, 

𝐹(𝑧) = −𝑘𝐵𝑇 ln ℘𝑗
w(𝑧) − 𝜂𝑗(𝑧) + constj 

This provides a way to measure the free energy, again by approximating each ℘𝑗
w(𝑧) by a histo-

gram.  Notice that each simulation 𝑗 should return, in principle, the same distribution ℘(𝑧).  Also 

note that the constant term will be different for each umbrella.   

We have forced the different distributions to span a broad range of 𝑧 solely to attain accurate 

statistics over the full range of 𝑧.  We could stitch together the 𝐽 estimates of 𝐹(𝑧) by shifting the 

unknown constants so as to obtain overlap in the common regions: 
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We need to have sufficient overlap between the distributions in each simulation in order to do 

this effectively.  Clearly a more systematic approach would be desirable, since the error in the 

curves are likely largest where they overlap – in the tails of the probability distributions. 

Statistically-optimal multiple histogram reweighting 

Rather than visually shift these curves to overlap, we can resort to statistical methods.  Ferren-

berg and Swendsen in 1989 proposed an optimal way to stitch together different histograms by 

minimizing the statistical error in the computed free energies.  It was later generalized by [Kumar 

et al., 1992] and was named the Weighted Histogram Analysis Method (WHAM). The so-called 

Multistate Bennet Acceptance Ratio (MBAR) approach of Shirts and Chodera in 2008 is a more 

statistically rigorous approach to the same calculation, and their pymbar Python implementation 

is now community standard for automating the calculations.   

Generally the best way to extract a free energy is through an approach called multiple histogram 

reweighting.  Here we take a maximum likelihood approach to deriving the main results.  Maxi-

mum likelihood estimation is a statistical method for parameterizing probability models that can 

be shown to have the lowest error versus any other approach in the limit of large sample sizes.  

It simply says the following: posit some form of the underlying distribution function for a random 

process.  Then, given an observed set of events, the best parameters for that distribution are 

those that maximize the probability (likelihood) of the observed events. 

℘(𝑧) 

𝑧 

𝑗 = 2 𝑗 = 1 𝑗 = 3 

ln ℘𝑗
w(𝑧)

− 𝛽𝜂𝑗(𝑧)

+ const 

𝑧 
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Say that we make 𝑛 independent observations of the distance 𝑧 in each umbrella simulation 𝑗.  In 

order to make a connection with the histogram, we will discretize all of z space into discrete 

values 𝑧𝑘 separated by intervals 𝛿𝑧.  Before we start, let’s define some notation: 

• 𝑛 – number of observations in each umbrella simulation 

• 𝑖 – index of observations (𝑖 = 1, … , 𝑛) 

• 𝑗 – index of umbrella (𝑗 = 1, … , 𝐽) 

• 𝑘 – index of discrete distance values  

• 𝐹𝑘 – discrete free energy values at each distance 

• 𝜂𝑗𝑘  –  bias in umbrella 𝑗 at distance 𝑘 

• 𝑧𝑖𝑗 – 𝑖th observation of 𝑧 in umbrella 𝑗 

• 𝑐𝑗𝑘– count of histogram entries for umbrella 𝑗 and distance bin 𝑘 

With these notations, we construct the total probability or likelihood 𝐿 of making the 𝑛𝐽 obser-

vations from the different umbrella simulations in terms of a yet-unknown unknown density of 

states function: 

𝐿 = ∏ ∏ ℘𝑗(𝑧𝑖𝑗)

𝐽

𝑗=1

𝑛

𝑖=1

 

= ∏ ∏ (
𝑒−𝛽𝐹(𝑧𝑖𝑗)−𝛽𝜂𝑗(𝑧𝑖𝑗)

𝑍𝑗
)

𝐽

𝑗=1

𝑛

𝑖=1

 

Here, the 𝑍𝑗 can be seen as the probability normalization constants and are formally given by 

𝑍𝑗 = 𝑒−𝛽𝐴𝑗 = ∫ 𝑒−𝛽𝐹(𝑧)−𝛽𝜂𝑗(𝑧)𝑑𝑧 

𝑍𝑗 = 𝑒−𝛽𝐴𝑗 = ∑ 𝑒−𝛽𝐹𝑘−𝛽𝜂𝑗𝑘

𝑘

 

where the 𝐴𝑗 are the free energies of each umbrella.   

With all of these considerations, we can rewrite the above probability in terms of histograms: 
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𝐿 = ∏ ∏ (
𝑒−𝛽𝐹𝑘−𝛽𝜂𝑗𝑘

𝑍𝑗
)

𝑐𝑗𝑘
𝐽

𝑗=1𝑘

 

Note that the sum over observations was converted to a sum over discrete distance indices, with 

the 𝑐𝑗𝑘 accounting for the number of observations at each distance.  Note also: 

• 𝐹𝑘 → (unbiased) free energy at discrete distance 𝑘 

• 𝜂𝑗𝑘 → bias for umbrella 𝑗 at distance 𝑘 

Taking the logarithm, 

ln 𝐿 = ∑ ∑ 𝑐𝑗𝑘[−𝛽𝐹𝑘 − 𝛽𝜂𝑗𝑘 + 𝛽𝐴𝑗]

𝐽

𝑗=1𝑘

 

According to the maximum likelihood approach, we want to maximize the likelihood of the ob-

servations with respect to any adjustable parameters in our probability model.  The observations 

are the histogram counts 𝑐𝑗𝑘 and the parameters are the yet unknown values 𝐹𝑘.  (Note that the 

𝐴𝑗 values are not independent, because they can be computed from the 𝐹𝑘 and 𝜂𝑗𝑘.)  Therefore, 

we take the derivative with respect to 𝐹𝑘 and set it equal to zero: 

0 =
𝜕 ln 𝐿

𝜕𝐹𝑘
     for all 𝑘 

Evaluating, 

0 = ∑ (−𝛽𝑐𝑗𝑘 + 𝑛𝛽
𝜕𝐴𝑗

𝜕𝐹𝑘
)

𝐽

𝑗=1

 

The latter derivative is 

𝛽
𝜕𝐴𝑗

𝜕𝐹𝑘
= −

𝜕 ln 𝑍𝑗

𝜕𝐹𝑘
 

= −
1

𝑍

𝜕𝑍𝑗

𝜕𝐹𝑘
 

= 𝛽
𝑒−𝛽𝐹𝑘−𝛽𝜂𝑗𝑘

𝑍𝑗
 

= 𝛽𝑒−𝛽𝐹𝑘−𝛽𝜂𝑗𝑘+𝛽𝐴𝑗 

Substituting back in: 

0 = ∑(𝑐𝑗𝑘 − 𝑛𝑒−𝛽𝐹𝑘−𝛽𝜂𝑗𝑘+𝛽𝐴𝑗)

𝐽

𝑗=1

     for all 𝑘 
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This can be solved for 𝐹𝑘: 

𝑒𝛽𝐹𝑘 = [∑ 𝑐𝑗𝑘

𝐽

𝑗=1

] [𝑛 ∑ 𝑒−𝛽𝜂𝑗𝑘+𝛽𝐴𝑗

𝐽

𝑗=1

]

−1

 

Notice that this equation now provides us with a recipe for computing the free energy (the LHS) 

based on histogram data.  We can simplify slightly: 

𝑒𝛽𝐹𝑘 =
𝑐𝑡𝑜𝑡,𝑘

𝑛
[∑ 𝑒−𝛽𝜂𝑗𝑘+𝛽𝐴𝑗

𝐽

𝑗=1

]

−1

 

Here, we have made the definition  

𝑐𝑡𝑜𝑡,𝑘 = ∑ 𝑐𝑗𝑘

𝐽

𝑗=1

 

such that it gives the total number of histogram counts at distance 𝑧𝑘, in any umbrella 

Even though this expression gives us a way to determine the PMF from multiple umbrella simu-

lation results, note that the RHS involves the free energy at every temperature.  This free energy 

depends on 𝐹𝑘: 

𝐴𝑗 = −𝛽−1 ln ∑ 𝑒−𝛽𝐹𝑘−𝛽𝜂𝑗𝑘

𝑘

 

Iterative reweighting solution 

How can we solve for the discrete PMF free energy values 𝐹𝑘?  Ferrenberg and Swendsen sug-

gested an iterative solution: 

1. An initial guess is made for the 𝐽 values of 𝐴𝑗.  One can simply choose 𝐴𝑗 = 0 for all 𝑗. 

2. The (discretized) free energy at every distance is computed using 

𝛽𝐹𝑘 = ln 𝑐𝑡𝑜𝑡,𝑘 − ln 𝑛 − ln ∑ 𝑒−β𝜂𝑗𝑘+𝛽𝐴𝑗

𝐽

𝑗=1

         for all 𝑘 

3. The free energies are recalculated using 

−𝛽𝐴𝑗 = ln ∑ 𝑒−𝛽𝐹𝑘−𝛽𝜂𝑗𝑘

𝑘

       for all 𝑗 
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4. Steps 2 and 3 are repeated until the free energies no longer change upon each iteration.  

In practice, one typically checks to see if the free energies change less than some frac-

tional tolerance. 

5. According to the above equations, the function 𝐹𝑘 and the values 𝐴𝑗 can only be deter-

mined to within an additive constant.  Thus, with each iteration, one typically sets one of 

the free energies equal to zero in one umbrella, such as 𝐴𝑗=1 = 0, and similarly 𝐹𝑘=1 = 0. 

Thus, the combination of umbrella sampling and statistical reweighting allows us to: 

• Explicitly force exploration of the full reaction coordinate through biasing potentials. 

• Rigorously remove the effect of the biases and compute the “true” PMF to high accuracy, 

in a statistically optimal way.  That free energy function 𝐹(𝑧) is approximated by the 

discrete-distance values 𝐹𝑘. 

Property averages through configurational weights 

What if we want to calculate other observables in the system, such as the protein orientation or 

hydration level as a function of 𝑧?  We can easily do by reweighting the umbrella simulations, in 

effect removing the bias post-simulation.  We define a weight associated with each configuration 

𝑖 in the trajectory at each umbrella 𝑗: 

𝑤𝑖𝑗 ∝ 𝑒−𝛽𝐹(𝑧𝑖𝑗)−𝛽𝜂𝑗(𝑧𝑖𝑗) 

In practice, the logarithm of the weights are maintained in the computer rather than the weights 

themselves, so as to maintain precision. 

Any property depending on the configurational coordinates can be determined by a sum over all 

of the 𝑛𝐽 observations using the weights: 

⟨𝑋⟩ =
∑ ∑ 𝑤𝑖𝑗𝑋𝑖𝑗

𝑛
𝑖=1

𝐽
𝑗=1

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑖=1

𝐽
𝑗=1

 

Here, 𝑋𝑖𝑗 is the value of the property 𝑋 for the 𝑖th configuration observed in umbrella 𝑗.  For 

example, one can compute the mean potential energy, 

⟨𝑈⟩ =
∑ ∑ 𝑤𝑖𝑗𝑈𝑖𝑗

𝑛
𝑖=1

𝐽
𝑗=1

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑖=1

𝐽
𝑗=1

 

Or we could find the mean potential energy at a given distance by restricting the sums to those 

distances of interest. 
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⟨𝑈⟩𝑧 =
∑ ∑ 𝑤𝑖𝑗𝑈𝑖𝑗

𝑛
𝑖=1 𝛿𝑧,𝑧𝑖𝑗

𝐽
𝑗=1

∑ ∑ 𝑤𝑖𝑗𝛿𝑧,𝑧𝑖𝑗

𝑛
𝑖=1

𝐽
𝑗=1

 

However, keep in mind that 𝑋 can be any property of interest.  Notice that the reweighting ap-

proach uses all of the data, from each umbrella simulation.  Thus, it provides an incredibly general 

way to determine averages in a statistically optimal manner.   

Formal details of reweighting 

Histograms in simulations 

Histograms are concerned with computing property fluctuations, and as we saw can be tied to 

free energies (and also entropies).  Let’s talk a bit about how we build a histogram.  For the pur-

poses of illustration, consider a histogram in distance per the protein-surface example.  In our 

simulation, we would measure the distribution of the variable 𝑧 using a long simulation run and 

many observations of the instantaneous value of 𝑧.   

The distance is a continuously-varying variable.  Therefore, the underlying ℘(𝑧) is a continuous 

probability distribution.  However, in the computer we must measure a discretized version of this 

distribution.   

• We specify a minimum and maximum value of the energy that defines a range of dis-

tances in which we are interested.  Let these be 𝑧min and 𝑧max. 

• We define a set of 𝑚 bins into which the energy range is discretized.  Each bin has a bin 

width of  

𝛿𝑧 =
𝑧max − 𝑧min

𝑚
 

• Let the variable 𝑘 be the bin index.  It varies from 0 to 𝑚 − 1.  The average distance of 

bin 𝑘 is then given by 

𝑧𝑘 = 𝑧min + (𝑘 +
1

2
) 𝛿𝑧 

• We create a histogram along the distance bins.  This is simply an array in the computer 

that measures counts of observations: 

𝑐𝑘 = counts of 𝑧 observations in the range [𝑧𝑘 − 𝛿𝑧 2⁄ , 𝑧𝑘 + 𝛿𝑧 2⁄ ) 

To find the bin to which a given 𝑧 value belongs, we use 
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𝑘 = int (
𝑧 − 𝑧min

𝛿𝑧
) 

Here the int function returns the integer part of its argument.  For example, int(2.6) = 2.  For 

simplicity, we often write the histogram array using the distance, rather than the bin index, 

𝑐(𝑧) → 𝑐𝑘        where 𝑘 = int (
𝑧 − 𝑧min

𝛿𝑧
) 

To create a histogram in simulation, we perform a very large number of observations 𝑛 from a 

long, equilibrated molecular simulation.  At each observation, we update: 

𝑐(𝑧) ← 𝑐(𝑧) + 1 

This update is only performed if 𝑧min ≤ 𝑧 < 𝑧max.  Otherwise, the distance would be outside of 

the finite range of interest.  However, we still need to keep count of all distances, whether or not 

inside the range, in order to properly normalize our histogram. 

We can normalize to determine a discretized approximation to the true underlying continuous 

distribution ℘(𝑧): 

℘̃(𝑧)𝛿𝑧 =
𝑐(𝑧)

𝑛
 

where 𝑛 is the total number of observations, including those outside of the defined range.  On 

the LHS we include the bin width so as to approximate the continuous probability differential 

℘(𝑧)𝑑𝑧.  Thus, 

℘̃(𝑧) =
𝑐(𝑧)

𝑛𝛿𝑧
 

In the limit of an infinite number of observations from an infinitely long, equilibrated simulation, 

this approximation converges to the true one in the following manner: 

℘̃(𝑧𝑘)𝛿𝑧 = ∫ ℘(𝑧)𝑑𝑧
𝑧𝑘+𝛿𝑧 2⁄

𝑧𝑘−𝛿𝑧 2⁄

 

This equation simply says that we sum up all of the underlying probabilities for the continuous 

energies within a bin to obtain the observed, computed probabilities.  As the bin width goes to 

zero, we have 

lim
𝛿𝑧→0,𝑛→∞

℘̃(𝑧) = ℘(𝑧) 

Notice that there are two components to this limit: 
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• We need an infinite number of observations. 

• We need an infinite number of bins. 

These two limits “compete” with each other: as we increase the number of bins, we need more 

observations so that we have enough counts in each bin to have good statistical accuracy.  Prac-

tically speaking, we must choose a finite bin width that enables us to balance the length of the 

run with statistical accuracy in each bin.  Typically, for the example above, 

• The bin width is chosen to be of the order of a characteristic distance.  We might choose 

1 Å.  For a Lennard-Jones system, we might choose 0.1𝜎. 

• The simulation is performed long enough to achieve on the order of ~1000 or more aver-

age counts per bin, that is, 𝑛 ≥ 𝑚 × 1000. 

Statistical considerations 

Keep in mind that the computation of a histogram is subject to the same statistical considerations 

as simple simulation averages.  That is, the histogram needs to be performed for many correla-

tion times to reach good statistical accuracy.  It can be shown that the expected squared error in 

the histogram bin 𝑐(𝑧) goes as 

𝜎𝑐(𝑧)
2 ∝ 𝑐(𝑧) 

This implies that the error goes as the square root as the number of counts.  Similarly, the ex-

pected squared error in the corresponding estimate ℘̃(𝑧) goes as: 

𝜎℘̃(𝑧)
2 ∝

℘(𝑧)

𝑛
 

The relative error in ℘̃(𝑧) is given by: 

𝜎℘̃(𝑧)

℘̃(𝑧)
∝

1

√𝑛℘(𝑧)
 

Notice that the relative error is higher for lower values of ℘(𝑧), i.e., at the tails of the distribution. 

Multidimensional histograms 

In this example, we considered only a histogram of distance.  However, it is possible to construct 

histograms of many kinds of simulation observables.  We could, for example, measure a histo-

gram of both distance and an angle characterizing orientation of the protein, or distance and the 

number of waters in the protein’s hydration shell.   

We compute joint distributions using multidimensional histogram arrays.  For example, 
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℘̃(𝑧, 𝜃)𝛿𝑧𝛿𝜃 =
𝑐(𝑧, 𝜃)

𝑛
 

Note that any continuous variables will require discretization and specification of a bin width.  

Discrete variables, on the other hand, do not require such a definition because the underlying 

distribution itself is discrete.  A histogram for the number of hydration waters would follow: 

℘̃(𝑁𝑤) =
𝑐(𝑁𝑤)

𝑛
 

Moreover, many kinds of distributions require the specification of a minimum and maximum ob-

servable value. 

Connection to statistical mechanics 

The power of histograms is that they allow us to measure fluctuations in the simulation that can 

be used to extract underlying partition functions.  That is, we measure ℘(𝑧) in simulation and 

then we post-process this discretized function to make connections to free energies and entro-

pies. 

The rigorous form of the distribution ℘(𝑧) is given by: 

℘(𝑧) =
∫ 𝑒−𝛽𝑈𝛿[𝑧 − �̂�(𝐫𝑁)]𝑑𝐫𝑁

𝑍(𝑇, 𝑉, 𝑁)
=

𝑒−𝛽𝐹(𝑧)

𝑍(𝑇, 𝑉, 𝑁)
 

where 𝑍(𝑇, 𝑉, 𝑁) is the configurational partition function, 

𝑍(𝑇, 𝑉, 𝑁) = ∫ 𝑒−𝛽𝑈𝑑𝐫𝑁 = ∫ 𝑒−𝛽𝐹(𝑧)𝑑𝑧 

Potentials of mean force (PMFs) 

Formally, a potential of mean force (the free energy) along some reaction coordinate 𝜉 is given 

by a partial integration of the partition function.  In the canonical ensemble, we begin with the 

configurational part of the Helmholtz free energy, 

𝐹(𝜉) = 𝐴(𝑇, 𝑉, 𝑁, 𝜉) 

= −𝑘𝐵𝑇 ln 𝑍(𝑇, 𝑉, 𝑁, 𝜉) 

= −𝑘𝐵𝑇 ln ∫ 𝑒−𝛽𝑈(𝐫𝑁)𝛿[𝜉 − 𝜉(𝐫𝑁)]𝑑𝐫𝑁 

Here, 𝜉(𝐫𝑁) is a function that returns the value of the order parameter for a particular configu-

ration 𝐫𝑁.  The integral in this expression entails a delta function that filters for only those Boltz-

mann factors for configurations with the specified 𝜉. 
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One can think of the PMF as the free energy when the system is constrained to a given value of 

𝜉.  Notice that we have the identity 

∫ 𝑒−𝛽𝐹(𝜉)𝑑𝜉 = 𝑒−𝛽𝐴 

The potential of mean force is so-named because its derivative gives the average force along the 

direction of 𝜉 at equilibrium.  We proceed to find the derivative of the PMF: 

𝑑𝐹(𝜉)

𝑑𝜉
= −𝑘𝐵𝑇

𝑑

𝑑𝜉
ln ∫ 𝑒−𝛽𝑈(𝐫𝑁)𝛿[𝜉 − 𝜉(𝐫𝑁)]𝑑𝐫𝑁 

= −𝑘𝐵𝑇

𝑑
𝑑𝜉 ∫ 𝑒−𝛽𝑈(𝐫𝑁)𝛿[𝜉 − 𝜉(𝐫𝑁)]𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈(𝐫𝑁)𝛿[𝜉 − 𝜉(𝐫𝑁)]𝑑𝐫𝑁
 

To make progress, we need the mathematical identity 

𝑑

𝑑𝑎
∫ 𝑔(𝑥)𝛿(𝑥 − 𝑎)𝑑𝑥 = ∫

𝑑𝑔(𝑥)

𝑑𝑥
𝛿(𝑥 − 𝑎)𝑑𝑥 

This allows us to pull the derivative inside the integral: 

𝑑𝐹(𝜉)

𝑑𝜉
= −𝑘𝐵𝑇

∫ (
𝑑

𝑑𝜉
𝑒−𝛽𝑈(𝐫𝑁)) 𝛿[𝜉 − 𝜉(𝐫𝑁)]𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈(𝐫𝑁)𝛿[𝜉 − 𝜉(𝐫𝑁)]𝑑𝐫𝑁
 

= −𝑘𝐵𝑇
∫ (−𝛽

𝑑𝑈
𝑑𝜉

𝑒−𝛽𝑈(𝐫𝑁)) 𝛿[𝜉 − 𝜉(𝐫𝑁)]𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈(𝐫𝑁)𝛿[𝜉 − 𝜉(𝐫𝑁)]𝑑𝐫𝑁
 

= −
∫ 𝑓𝜉𝑒−𝛽𝑈(𝐫𝑁)𝛿[𝜉 − 𝜉(𝐫𝑁)]𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈(𝐫𝑁)𝛿[𝜉 − 𝜉(𝐫𝑁)]𝑑𝐫𝑁
 

Here, the term 𝑓𝜉  gives the force along the direction of 𝜉,  

𝑓𝜉 = −
𝑑𝑈

𝑑𝜉
 

= −
𝑑𝐫𝑁

𝑑𝜉
⋅ ∇𝑈 

=
𝑑𝐫𝑁

𝑑𝜉
⋅ 𝐟𝑁 

The remainder of the terms in the PMF equation serve to average the force for a specified value 

of 𝜉.  Thus, 
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𝑑𝐹(𝜉)

𝑑𝜉
= −⟨𝑓𝜉(𝜉)⟩ 

Theory of biased ensembles and reweighting 

When we perform a simulation with an artificial bias, we are simulating in biased ensembles.  

Such ensembles have some benefits: 

• We can achieve broader sampling of particular states that are rarely visited, in order to 

compute properties of them.  The usual ensembles give rise to sharply peaked distribution 

functions whose relative width scales as 𝑁−1 2⁄ ; biased ensembles allow us to broaden 

these fluctuations. 

• We can achieve enhanced sampling of states in a way that promotes faster equilibration 

times. 

• By designing artificial ensembles that visit frequently states that are normally rarely-sam-

pled, we can compute free energies of them to much higher accuracy than would nor-

mally be the case.  We saw this was particularly useful with umbrella sampling 

Ultimately, reality exists in standard ensembles.  Therefore, any simulation of a system that we 

perform in a biased ensemble must somehow be related back to results for that system in usual 

ensembles.  To do this, we can use reweighting techniques.   

Keep in mind that the specification of the ensemble is entirely separate from the specification of 

the system evolution.  We can use molecular dynamics or Monte Carlo to perform the sampling.  

Here, however, we will consider the case of a MC simulation specifically. 

General formalism and connection to statistical mechanics 

For the sake of simplicity, we will use a discrete notation to indicate the probability distribution, 

as we did in our initial discussion of MC methods: 

℘𝑚 

where 𝑚 denotes one configurational microstate of the system, e.g., a set of coordinates 𝐫𝑁.   

Consider a MC simulation in the canonical ensemble, where we specify 

℘𝑚 ∝ 𝑒−𝛽𝑈𝑚  

We now want to perform a biased simulation in this ensemble where we introduce a weighting 

factor for the microstates in the exponential: 

℘𝑚
w ∝ 𝑒−𝛽𝑈𝑚+𝜂𝑚 
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The weighting function 𝜂𝑚 modifies the canonical distribution so that some configurations have 

higher or lower probabilities than would normally be expected.  It gives a value that is dependent 

on the particular configuration of interest.  This function can take a variety of forms.   

We can think of the weighting function as giving rise to an effective "weighted" potential energy 

function: 

𝑒−𝛽𝑈𝑚+𝜂𝑚 ≡ 𝑒−𝛽𝑈𝑚
w

 

or, 

𝑈w ≡ 𝑈 − 𝑘𝐵𝑇𝜂 

Notice that if 𝜂𝑚 = const, then we recover the usual canonical distribution because its effect is 

removed via the normalization condition: 

℘𝑚
w =

𝑒−𝛽𝑈𝑚+𝜂𝑚

∑ 𝑒−𝛽𝑈𝑚′+𝜂𝑚′
𝑚′

 

Comparing the weighted and unweighted ensembles, 

℘𝑚

℘𝑚
w

∝ 𝑒−𝜂𝑚 

Imagine that we perform a MC simulation in the weighted ensemble.  For symmetric moves, our 

acceptance criterion would follow 

𝑃12
acc

𝑃21
acc =

℘2
w

℘1
w 

= 𝑒−𝛽(𝑈2−𝑈1)+𝜂2−𝜂1 

= 𝑒−𝛽Δ𝑈+Δ𝜂 

With the Metropolis form, 

𝑃12
acc = min[1, 𝑒−𝛽𝛥𝑈+𝛥𝜂] 

Ultimately, the MC simulation would generate a trajectory of configurations according to the 

distribution ℘𝑚
w .  We could compute the average of any property 𝑋 in the weighted ensemble, 

⟨𝑋⟩w =
1

𝑛
∑ 𝑋𝑖 

where the index 𝑖 = 1, … , 𝑛 is an index over the trajectory configurations.  
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What if we wanted to compute the average in the unweighted ensemble (the usual canonical 

average)?  We could still perform a simulation in the weighted ensemble, but our expression for 

the unweighted average would need to take into account differences in ℘𝑚
w  and ℘𝑚: 

⟨𝑋⟩u =

∑ 𝑋𝑖
℘𝑖

℘𝑖
w

∑
℘𝑖

℘𝑖
w

 

Substituting from above, 

⟨𝑋⟩u =
∑ 𝑋𝑖 𝑒−𝜂𝑖

∑ 𝑒−𝜂𝑖
 

Here, 𝜂𝑖  gives the value of the weighting function for each configuration included in the trajectory 

𝑖.  The denominator in this expression serves as a normalization for the unweighting expression.   

Practical and statistical issues 

To perform such an unweighting of weighted simulation results, we need keep lists of the values 

𝐴𝑖  and 𝜂𝑖  for each of the trajectory configurations.  We also must rearrange the exponential so 

that we don’t run out of precision: 

⟨𝑋⟩u =
∑ 𝑋𝑖 𝑒−𝜂𝑖+𝜂min

∑ 𝑒−𝜂𝑖+𝜂min
            𝜂min = min

𝑖
𝜂𝑖  

Keep in mind that the error in this expression is determined by the correlation times of the ob-

servable in the weighted ensemble. 

The error is also highly dependent on whether the distribution of 𝑋 in the unweighted ensemble 

is similar to the distribution in the weighted ensemble.  If ⟨𝑋⟩u is rarely sampled in the weighted 

simulation, then the statistics of this unweighting procedure will produce a poor estimate of the 

unweighted average.   

Typically, however, one explicitly selects a weighting function that allows the simulation to ex-

plore a very wide range of 𝑋 to accumulate good statistics, much wider than runs in conventional 

ensembles.  With multiple histogram reweighting, we run many different simulations and per-

form the reweighting over all of them at once, like we did with umbrella sampling. 


