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Macroscopic free energies and reweighting ChE210D 

Today's lecture: measuring free energies along macroscopic degrees of freedom 

and using reweighting concepts to make predictions at other state conditions 

post-simulation 

Generalization of reweighting to other free energies 
In our previous protein-surface example, we measured the free energy along a reaction coordi-

nate of interest, 𝐹(𝑧).  It is easy to see how this could be extended to other molecular reaction 

coordinates, such as orientation, radius of gyration, etc. to measure a PMF.  However, we can 

use similar approaches to determine free energies associated with macroscopic or ensemble pa-

rameters.   

Macroscopic free energies 

We may be concerned with the Helmholtz free energy or Gibbs free energy.  We might compute 

changes in these as a function of their natural variables.  For single-component systems: 

𝐴(𝑇, 𝑉, 𝑁) 

𝐺(𝑇, 𝑃, 𝑁) 

For multicomponent systems, 

𝐴(𝑇, 𝑉, 𝑁1, … , 𝑁𝑀) 

𝐺(𝑇, 𝑃, 𝑁1, … , 𝑁𝑀) 

Typically we are only interested in the dependence of these free energies along a single param-

eter, e.g., 

𝐴(𝑉), 𝐺(𝑃), 𝐺(𝑇), etc. 

for constant values of the other independent variables. 

Free energies for changes in the interaction potential 

It is also possible to define a free energy change associated with a change in the interaction po-

tential.  Initially the energy function is 𝑈0(𝐫𝑁) and we perturb it to 𝑈1(𝐫𝑁).  If this change hap-

pens in the canonical ensemble, we are interested in the free energy associated with this pertur-

bation: 

Δ𝐴 = 𝐴1(𝑇, 𝑉, 𝑁) − 𝐴0(𝑇, 𝑉, 𝑁) 
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= −𝑘𝐵𝑇 ln (
∫ 𝑒−𝛽𝑈1(𝐫𝑁)𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈0(𝐫𝑁)𝑑𝐫𝑁
) 

What kinds of states 1 and 0 might we use to evaluate this expression?  Here is a small number 

of sample applications: 

• electrostatic free energy – charging of an atom or atoms in a molecule, in which state 0 

has zero partial charges and state 1 has finite values 

• dipolar free energy – adding a point dipole to an atom between states 0 and 1 

• solvation free energy – one can “turn on” interactions between a solvent and a solute as 

a way to determine the free energy of solvation 

• free energy associated with a field – states 0 and 1 correspond to the absence and pres-

ence, respectively, of a field, such as an electrostatic field 

• restraint free energy – turning on some kind of restraint, such as confining a molecule to 

have a particular conformation or location in space.  Such restraints would correspond to 

energetic penalties for deviations from the restrained space in state 1. 

• free energies of alchemical transforms – we convert one kind of molecule (e.g., CH4) to 

another kind (e.g., CF4).  This gives the relative free energies of these two kinds of mole-

cules in the system of interest (e.g., solvation free energies in solution). 

Sampling considerations 

In each of the cases above, we must sample along the coordinate of interest to compute the free 

energy.  Unlike the case of molecular coordinates, with macroscopic coordinates we do not need 

to use umbrella sampling or other biasing techniques because we choose exactly the ensemble 

conditions like 𝑇, 𝑃, 𝑉 and the force field 𝑈(𝐫𝑁) in the simulation setup.  Thus, to use reweighting 

techniques to determine free energies, we perform multiple simulations at different values of 

our coordinate, and post process the data using similar statistically optimal reweighting equa-

tions. 

In general, 

• To compute a free energy or entropy as a function of some macroscopic parameter 𝑋, the 

simulation must accomplish fluctuations in 𝑋.  For example, 𝐴(𝑉) requires fluctuations in 

𝑉 and thus would necessitate use of the NPT ensemble. 
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• To have good statistical accuracy, a wide range of fluctuations in 𝑋 must be sampled.  This 

can be accomplished by performing multiple simulations at different values of the param-

eter conjugate to 𝑋.  To compute 𝐴(𝑉), different pressures 𝑃 would be imposed for mul-

tiple simulations at the same temperature. 

• The multiple-histogram reweighting procedure will compute the relevant free energy 

𝐹(𝑋) as well as the relative partition functions at the different simulation conditions.  In 

the example for 𝐴(𝑉), we would find 𝐴(𝑉) as well as 𝐺𝑗, the Gibbs free energy of each 

NPT run. 

Case study: 𝑇-dependent free energies at constant 𝑁, 𝑉 

Theory 

Let’s imagine that we want to compute 𝛽2𝐴(𝑇2) − 𝛽1𝐴(𝑇1) for a system.  Statistical mechanics 

tells us that: 

𝑍(𝑇) = 𝑒−𝛽𝐴 

= ∫ Ω(𝑈)𝑒−𝛽𝑈𝑑𝑈 

= ∫ 𝑒𝑆(𝑈)−𝛽𝑈𝑑𝑈 

where we have repressed the dependencies of quantities on 𝑁 and 𝑉, which are constant.  Here, 

Ω is the configurational density of states and 𝑆 the configurational entropy.  The reason that we 

write the free energy as this particular integral is because Ω is common between two different 

temperatures, i.e., it is strictly temperature independent.   

This form also suggests that free energies (and differences) are related to relative energy fluctu-

ations.  Consider the energy distribution ℘(𝑈): 

℘(𝑈) =
Ω(𝑈)𝑒−𝛽𝑈

𝑍(𝑇)
=

𝑒𝑆(𝑈)−𝛽𝑈

𝑍(𝑇)
           

where 𝑍(𝑇, 𝑉, 𝑁) is the configurational partition function. 

If we were able to compute 𝑆(𝑈), we would be able to predict the complete energy distribution 

℘(𝑈) at any temperature.  For example, we can compute the average potential energy at any 

temperature using the expression 

⟨𝑈⟩(𝑇) = ∫ 𝑈℘(𝑈; 𝑇)𝑑𝑈 
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= ∫
𝑈𝑒𝑆(𝑈)−𝛽𝑈𝑑𝑈

𝑍(𝑇)
 

=
∫ 𝑈𝑒𝑆(𝑈)−𝛽𝑈𝑑𝑈

∫ 𝑒𝑆(𝑈)−𝛽𝑈𝑑𝑈
 

We might extract an estimate for 𝑆 by measuring ℘(𝑈; 𝑇) from a histogram in a simulation at 

specified temperature 𝑇.  Inverting the above relationship, 

𝑆(𝑈) = ln [
𝑍(𝑇)℘(𝑈; 𝑇)

𝑒−𝛽𝑈
] 

= ln ℘(𝑈; 𝑇) + 𝛽𝑈 + ln 𝑍(𝑇) 

= ln ℘(𝑈; 𝑇) + 𝛽𝑈 − 𝛽𝐴(𝑇) 

Here, 𝐴(𝑇) technically denotes the configurational part of the Helmholtz free energy, which is 

𝑘𝐵𝑇 ln[𝑁! Λ(𝑇)3𝑁] less than the total free energy in a single component system. 

We can measure ℘(𝑈; 𝑇) using a histogram along a set of discrete energies.  Post-simulation, we 

can then take this measured distribution and use it to compute a discrete approximation to the 

dimensionless entropy function at the same energies, 

𝑆(𝑈𝑘) = ln ℘(𝑈𝑘; 𝑇) + 𝛽𝑈𝑘 − 𝛽𝐴(𝑇) 

Because the Helmholtz free energy is a temperature-dependent constant that is independent of 

potential energy 𝑈, we can compute the entropy function 𝑆 to within an additive constant 

through a histogram.  Fundamentally, it does not matter which temperature we use to measure 

𝑆(𝑈): any temperature-dependencies on the RHS of this equation should exactly cancel to leave 

a 𝑇-independent function.   

Reweighting a single simulation 

We can use a computed a discrete approximation to the energy distribution to predict ℘(𝑈) at 

temperatures other than the original simulation temperature.  This is a basic form of reweighting, 

since we use a distribution measured at one temperature to predict that at another.   

Imagine 𝑆(𝑈) is computed from ℘(𝑈; 𝑇1) in a canonical simulation at 𝑇1.  We have 

𝑆(𝑈) = ln ℘(𝑈; 𝑇1) + 𝛽1𝑈 − 𝛽1𝐴(𝑇1) 

We want to predict ℘(𝑈; 𝑇2) at another temperature 𝑇2.  We have 

℘(𝑈; 𝑇2) =
𝑒𝑆(𝑈)−𝛽2𝑈

𝑍(𝑇2)
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Plugging in the above expression for 𝑆, 

℘(𝑈; 𝑇2) = ℘(𝑈; 𝑇1)𝑒−(𝛽2−𝛽1)𝑈
𝑍(𝑇1)

𝑍(𝑇2)
 

The last term on the RHS involving the ratio of partition functions is independent of 𝑈.  We can 

find it using the probability normalization condition, 

∫ ℘(𝑈; 𝑇2)𝑑𝑈 = 1 

Thus, 

℘(𝑈; 𝑇2) =
℘(𝑈; 𝑇1)𝑒−(𝛽2−𝛽1)𝑈

∫ ℘(𝑈; 𝑇1)𝑒−(𝛽2−𝛽1)𝑈 𝑑𝑈
 

This equation states that a distribution measured at 𝑇1 can be used to predict a distribution at a 

different 𝑇2.  In principle, we would only need to perform a single simulation, measure ℘(𝑈) 

once, and use this expression to examine the energy distribution at any other temperature of 

interest.  For example, we might compute the average energy as a function of temperature using 

the equation 

⟨𝑈⟩(𝑇2) = ∫ 𝑈℘(𝑈; 𝑇2)𝑑𝑈 

=
∫ 𝑈℘(𝑈; 𝑇1)𝑒−(𝛽2−𝛽1)𝑈 𝑑𝑈

∫ ℘(𝑈; 𝑇1)𝑒−(𝛽2−𝛽1)𝑈 𝑑𝑈
 

Similar expressions could be found for other moments of the potential energy, such as ⟨𝑈2⟩.  

These could be used to compute the temperature dependence of the heat capacity, using the 

relationship 𝑘𝐵𝑇2𝐶𝑉 = ⟨𝑈2⟩ − ⟨𝑈⟩2. 

Free energy differences from histograms 

If we measure ℘(𝑈; 𝑇1) and ℘(𝑈; 𝑇2) from two simulations at different temperatures, we can 

also compute a free energy difference.  We construct: 

ln
℘(𝑈; 𝑇2)

℘(𝑈; 𝑇1)
= [𝑆(𝑈) − 𝛽2𝑈 + 𝛽2𝐴(𝑇2)] − [𝑆(𝑈) − 𝛽1𝑈 + 𝛽1𝐴(𝑇1)] 

= −(𝛽2 − 𝛽1)𝑈 + 𝛽2𝐴(𝑇2) − 𝛽1𝐴(𝑇1) 

Rearranging, 

𝛽2𝐴(𝑇2) − 𝛽1𝐴(𝑇1) = ln
℘(𝑈; 𝑇2)

℘(𝑈; 𝑇1)
+ (𝛽2 − 𝛽1)𝑈 
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The RHS is dependent on 𝑈, whereas the LHS is not!  In principle, any value of 𝑈 could be plugged 

into the RHS and the same free energy would be returned.   

Unfortunately, there are practical limits to the histogram reweighting procedure just described.  

The main problem is the measurement of ℘(𝑈) to good statistical accuracy in the tails of its 

distribution.  Consider that a typical ℘(𝑈) is very sharply peaked: 

 

The width of the distribution relative to the mean goes roughly as 𝑁−
1

2 so that, for macroscopic 

systems, the distribution is infinitely peaked. 

The implication of this result is that it is very hard to measure the distribution at it tails, where 

we typically only have a few counts in each bin.  If we reweight a measured distribution to a 

temperature where the tails change to high probability, the error can be magnified to be very 

large. 

 

Here, the mean of the distribution at the new temperature is well within the tail region of the 

distribution at the original temperature.  If we reweight ℘(𝑈; 𝑇1) to 𝑇2, errors in the tails will be 

magnified.  The error in the new distributions can be written approximately as 

℘(𝑈) 

𝑈 

℘(𝑈) 

𝑈 

𝑇2 > 𝑇1 

𝑇1 

𝑈∗ 
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𝜎℘(𝑈;𝑇2)
2 ≈ 𝜎℘(𝑈;𝑇1)

2 (
℘(𝑈; 𝑇2)

℘(𝑈; 𝑇1)
)

2

 

This formula is derived using standard error propagation rules.  Notice that if 𝑇2 = 𝑇1, the error 

is the same at each energy as from the original measurement.  Otherwise, we must weigh the 

error by a ratio involving the two probability distributions.  In the above picture, the ratio at the 

mean energy 

℘(𝑈∗; 𝑇2)

℘(𝑈∗; 𝑇1)
 

is very large due to the small probability of this energy at 𝑇1.  Therefore, the error is greatly mag-

nified in the reweighting procedure according to the above equation. 

In general, 

• Distributions are subject to statistical inaccuracies at their tails, owing to the finite num-

ber of counts in each bin. 

• If the important parts of the energy distribution at 𝑇2 correspond to the tails of a meas-

ured distribution at 𝑇1, a reweighting procedure will fail due to large statistical errors. 

• If computed from a measured ℘(𝑈; 𝑇), the quality of an estimated 𝑆𝑐(𝑈) function is only 

good around the frequently-sampled energies, i.e., for energies where the histogram has 

many entries. 

These techniques limit the determination of free energies and entropies using measurements 

from single histograms.  The solution is to incorporate multiple histogram estimates of these 

quantities. 

Multiple histogram reweighting 

As we saw with umbrella sampling, we can improve our estimates of free energies using multiple 

histograms from multiple simulations 𝑖, each at a different temperature 𝑇𝑖.  For each, we would 

get a different estimate of the underlying dimensionless configurational entropy function 𝑆: 

𝑆(𝑈) = ln ℘(𝑈; 𝑇𝑖) + 𝛽𝑖𝑈 − 𝛽𝑖𝐴(𝑇𝑖) 

We should get the same function every time.  We don’t know the free energies, but they are 

independent of 𝑈 and thus can be treated as additive constants.  We can therefore shift the 

different estimates for the entropy function up or down in value until they all match each other: 
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Notice that by finding the amounts to shift each curve to achieve overlap, we are determining 

relative free energy differences. 

The key to these calculations are these shift amounts.  The best ways of evaluating them consid-

ers the errors for each energy in each measured ℘(𝑈).  For this approach to work, we must have 

good overlap between the histograms.  That is, there must be ranges of the histograms that 

overlap with a reasonable number of counts in each.   Otherwise, it will be challenging to deter-

mine the shift amounts to good statistical accuracy. 

Statistically optimal multiple histogram reweighting 

As we saw with umbrella sampling, we can use statistically optimal methods to stitch together 

the results from multiple simulations to compute relative free energies.  In this context, we are 

determining S(𝑈) from 𝐽 simulations at different temperatures 𝑇𝑗.  We know that the underlying 

S(𝑈) for each should be the same, but that the measured histograms 𝑐𝑗(𝑈) will be different be-

cause the simulations are performed at different temperatures.  The observed events are the 

energies tabulated in the histograms. 

Here, the variables are: 

• 𝑛 – number of observations at each temperature 

℘(𝑈) 

𝑈 

𝑇2 > 𝑇1 

𝑇1 

𝑇3 > 𝑇2 

ln ℘(𝑈) + 𝛽𝑈

+ const 

𝑈 
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• 𝑖 – index of observations (𝑖 = 1, … , 𝑛) 

• 𝑗 – index of temperature (𝑗 = 1, … , 𝐽) 

• 𝑘 – index of discrete energy values  

• 𝑈𝑘 – discrete energy values  

• 𝑆𝑘 – entropy at the values 𝑈𝑘 

• 𝑈𝑖𝑗 – energy of the 𝑖th observation at temperature 𝑗 

• 𝑐𝑗𝑘– count of histogram entries for temperature 𝑗 and energy bin 𝑘 

With this notation, we construct the total likelihood 𝐿 of making the 𝑛𝐽 observations from the 

simulations in terms of a yet-unknown unknown entropy function: 

𝐿 = ∏ ∏ ℘(𝑈𝑖𝑗; 𝑇𝑗)

𝐽

𝑗=1

𝑛

𝑖=1

 

= ∏ ∏ (
𝑒𝑆(𝑈𝑖𝑗)−𝛽𝑗𝑈𝑖𝑗

𝑍𝑗
)

𝐽

𝑗=1

𝑛

𝑖=1

 

where the 𝑍𝑗 are given by 

𝑍𝑗 = 𝑒−𝛽𝐴𝑗 = ∑ 𝑒𝑆𝑘−𝛽𝑗𝑈𝑘

𝑘

 

Using a similar maximum likelihood approach as before, we find that the optimal entropy 𝑆𝑘 and 

free energy 𝐴𝑗 values are found from the iterative solution of the multiple histogram reweighting 

equations: 

𝑆(𝑈) = ln 𝑐𝑡𝑜𝑡(𝑈) − ln 𝑛 − ln ∑ 𝑒−𝛽𝑗𝑈+𝛽𝐴𝑗

𝐽

𝑗=1

         for all 𝑈 

and 

−𝛽𝑗𝐴𝑗 = ln ∑ 𝑒𝑆(𝑈)−𝛽𝑗𝑈

𝑈

       for all 𝑗 
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Keep in mind that we must set one free energy to zero, e.g., 𝐴1 = 0.  This iterative procedure can 

be fairly computationally expensive and require a nontrivial number of iterations to converge.  

The pymbar library has very nice, automated numerical methods to solve these equations. 

Once convergence has been achieved, energy averages at any temperature—even temperatures 

not included in the original dataset—can be computed with the expression 

℘(𝑈; 𝑇) ∝ 𝑒𝑆(𝑈)−𝛽𝑈 

The constant of proportionality is determined by normalizing the probability distribution. 

Property averages 

As before, we can compute averages of properties at any temperature by defining a weight as-

sociated with each configuration 𝑖 at each temperature 𝑗 at the reweighting temperature 𝑇: 

𝑤𝑖𝑗 =
𝑒𝑆(𝑈𝑖𝑗)−𝛽𝑈𝑖𝑗

𝑐𝑡𝑜𝑡(𝑈𝑖𝑗)
 

such that any property average for an observable 𝑋 follows: 

⟨𝑋⟩ =
∑ ∑ 𝑤𝑖𝑗𝑋𝑖𝑗

𝑛
𝑖=1

𝐽
𝑗=1

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑖=1

𝐽
𝑗=1

 

Here, 𝑋𝑖𝑗 is the value of the property 𝑋 for the 𝑖th configuration observed at temperature 𝑗.   

Binless implementation 

Because we are interested in free energies at different discrete states (e.g., temperatures), versus  

along some continuous coordinate, it’s worth considering the role of the bin width 𝛿𝑈 for com-

puting histograms and tabulating energies.  It is possible to follow this derivation in the limit that 

𝛿𝑈 → 0.  Then the expression for the free energies becomes: 

−𝛽𝑗𝐴𝑗 = − ln 𝑛 + ln [∑ ∑ 𝑒−𝛽𝑗𝑈𝑖𝑙 ( ∑ 𝑒−𝛽𝑚𝑈𝑖𝑙+𝛽𝑚𝐴𝑚

𝐽

𝑚=1

)

−1
𝑛

𝑖=1

𝐽

𝑙=1

] 

where 𝑙 and 𝑚 are also indices over temperature.  As with the previous approach, this equation 

must be iterated to solve for the free energies 𝐴𝑗. Notice that it involves a quadruple loop, once 

over observations and three times over temperatures (the indices 𝑗, 𝑙, 𝑚).  Therefore, conver-

gence can be much slower than the histogram version.  The MBAR and pymbar methods essen-

tially solve this problem efficiently. 

Once the free energies are determined, the configurational weights are: 
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𝑤𝑖𝑗 ∝
𝑒−𝛽𝑈𝑖𝑗

∑ 𝑒𝛽𝑙𝐴𝑙−𝛽𝑙𝑈𝑖𝑗𝐽
𝑙=1

 

Precision issues 

It is very important to keep in mind that the combined exponentiation and logarithm functions 

in these expressions require careful treatment in numerical evaluation in the computer in order 

to avoid precision inaccuracies.  More on this issue is described in the document “Simulation best 

practices.”  As a quick example, consider the computation of 

−𝐹 = ln ∑ 𝑒𝑤𝑖

𝑀

𝑖=1

 

To get around this numerical precision issues, we rearrange this expression so that the terms in 

the exponential are better-behaved: 

−𝐹 = ln [(
𝑒𝑤max

𝑒𝑤max
) ∑ 𝑒−𝑤𝑖

𝑀

𝑖=1

] 

= 𝑤max + ln ∑
𝑒𝑤𝑖

𝑒𝑤max

𝑀

𝑖=1

 

= 𝑤max + ln ∑ 𝑒𝑤𝑖−𝑤max

𝑀

𝑖=1

 

where 

𝑤max = max 𝑤𝑖  

Case study: predicting phase behavior with reweighting methods 
The computation of phase equilibria—saturation conditions, critical points, phase diagrams, 

etc.—is a major enterprise in the molecular simulation community.  There are many ways that 

one might go about this, including the Gibbs ensemble, and they are discussed in detail in [Chipot 

& Pohorille, Free Energy Calculations: Theory and Applications in Chemistry and Biology, 

Springer, 2007].  Of all of these methods, however, the current gold-standard for phase equilib-

rium computations is one that relies on multiple histogram reweighting.  This approach is often 

the quickest and has the best accuracy. 

Here we discuss these calculations in the context of liquid-vapor equilibria. Other phase behav-

ior—such as liquid-solid, vapor-solid, or liquid-liquid (in mixtures)—can be treated using this ap-

proach as well, although special techniques may be needed to treat structured phases. 
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Grand canonical perspective 

The basic idea of our calculations is the following: 

• For a given temperature, we want to find the conditions at which phase equilibrium oc-

curs.  In a single component system, we only have one free parameter to specify this con-

dition in addition to 𝑇, per the Gibbs phase rule.  This could be 𝑃 or 𝜇.   

• We will focus on 𝜇 instead of 𝑃 and perform simulations in the grand canonical ensemble.  

Thus, we want to find the value of 𝜇 at coexistence that generates an equilibrium between 

liquid and vapor phases.  We could equally choose 𝑃 and perform 𝑁𝑃𝑇 simulations; how-

ever, particle insertions and deletions are generally much more efficient than volume fluc-

tuations and thus we go with the former for computational reasons. 

• If the state conditions place us at conditions of phase equilibrium (i.e., on the liquid-vapor 

phase line), we expect the GCMC simulation to spontaneously fluctuate between a dense 

liquid (low 𝑈, large 𝑁) and dilute gas (high 𝑈, small 𝑁).  These fluctuations can be ob-

served by examining the joint distribution 

℘(𝑈, 𝑁) 

• At phase equilibrium, ℘(𝑈, 𝑁) will be bimodal, and the total probability weight under the 

two peaks will be equal.  One peak corresponds to the liquid phase, and the other to the 

gas phase. 

• We will find the conditions of phase equilibrium (𝑇, 𝜇) that result in a bimodal ℘(𝑈, 𝑁).  

We will generate ℘(𝑈, 𝑁; 𝑇, 𝜇) by reweighting simulation data from multiple simulations, 

each not necessarily on the phase coexistence line. 

GCMC implementation 

We need to gather enough histogram data so that we will be able to reweight ℘(𝑈, 𝑁; 𝑇, 𝜇) with 

good statistical accuracy.  We perform 𝐽 simulations in the grand-canonical ensemble at different 

temperatures 𝑇𝑗 and chemical potentials 𝜇𝑗.  For each we measure the joint distribution 

℘(𝑈, 𝑁; 𝑇𝑗 , 𝜇𝑗).  The temperatures and chemical potentials should be chosen so that the energy 

and particle number distributions all overlap with each other and span the complete range of 

liquid-to-gas densities.  Typically we perform the following range of simulations: 

• one near the (presumed) critical point that has large fluctuations in 𝑈 and 𝑁 

• one in the gas phase 

• several in the liquid phase, of varying temperature 
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The point is that we must have good histogram statistics for all the particle numbers and energies 

that will ultimately be relevant at phase equilibrium. 

 

Once these histograms are taken, multiple histogram reweighting (Ferrenberg-Swendsen like) 

iterations can be used to stitch together all of the data and to compute the free energy at each 

state point.  The relevant equations for GCMC simulations are: 

  

𝑆(𝑈, 𝑁) = ln 𝑐𝑡𝑜𝑡(𝑈, 𝑁) − ln 𝑛 − ln ∑ 𝑒−𝛽𝑗𝑈+𝛽𝑗𝜇𝑗𝑁+𝛽𝑗𝐹𝑗

𝐽

𝑗=1

         for all 𝑈, 𝑁 

−𝛽𝐹𝑗 = ln ∑ ∑ 𝑒𝑆(𝑈,𝑁)−𝛽𝑗𝑈+𝛽𝑗𝜇𝑗𝑁

𝑁𝑈

       for all 𝑗 

This procedure is performed until values for the discretized entropy 𝑆(𝑈, 𝑁) and free energies 

𝐹𝑗 = −𝑘𝐵𝑇𝑗 ln Ξ𝑗 converge.  Keep in mind that one value of 𝐹 must be set equal to zero.   

Once these values are determined, the joint distribution ℘(𝑈, 𝑁) can be computed for an arbi-

trary reweighting 𝑇, 𝜇 using 

℘(𝑈, 𝑁; 𝑇, 𝜇) ∝ 𝑒𝑆(𝑈,𝑁)−𝛽𝑈+𝛽𝜇𝑁 

The constant of proportionality is given by the normalization condition. 

Using the reweighting equation, one finds phase equilibrium by adjusting 𝜇 given a value of 𝑇 

until a bimodal distribution appears and the integral under each peak (the total probability of the 

𝑈 

𝑁 

near-critical simulation 

gas-phase simulation 

liquid-phase simulation 

lower-𝑇 liquid-phase 

simulation 
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phase) is the same.  Notice that this is a very fast operation since the Ferrenberg-Swendsen re-

weighting only needs to be performed once, at the beginning, to determine 𝑆(𝑈, 𝑁). 

The following figure shows what this distribution might look like, taken from a review article by 

Panagiotopoulos [Panagiotopoulos, J Phys: Condens Matter 12, R25 (2000)]. 

 

By repeating this procedure at different reweighting temperatures, one can map out the phase 

diagram.  In the 𝑇-𝜌 plane, this might look like: 

 

The average density of each phase can be determined using: 

⟨𝜌⟩𝐿 =
1

𝑉

∑ ∑ 𝑁℘(𝑈, 𝑁)𝑁>𝑁∗𝑈

∑ ∑ ℘(𝑈, 𝑁)𝑁>𝑁∗𝑈
          ⟨𝜌⟩𝐺 =

1

𝑉

∑ ∑ 𝑁℘(𝑈, 𝑁)𝑁<𝑁∗𝑈

∑ ∑ ℘(𝑈, 𝑁)𝑁<𝑁∗𝑈
 

T

r

gas liquid

critical point

gas + liquid
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Here, 𝑁∗ is the value of 𝑁 at the minimum between the two peaks in the distribution.   

Pressures can be found using the fact that 

𝛽𝑃𝑉 = ln Ξ(𝜇, 𝑇, 𝑉) 

We cannot compute absolute pressures using this equation, because we cannot compute Ξ ab-

solutely (one 𝐹𝑗 must be set to zero).  However, we can compare the pressures of two different 

state points: 

𝛽2𝑃2𝑉 − 𝛽1𝑃1𝑉 = ln
Ξ(𝜇2, 𝑇2, 𝑉)

Ξ(𝜇1, 𝑇1, 𝑉)
 

= ln
∑ ∑ 𝑒𝑆(𝑈,𝑁)−𝛽2𝑈+𝛽2𝜇2𝑁

𝑁𝑈

∑ ∑ 𝑒𝑆(𝑈,𝑁)−𝛽1𝑈+𝛽1𝜇1𝑁
𝑁𝑈

 

By letting one state point correspond to a very dilute, high temperature gas phase, we can com-

pute its absolute pressure using the ideal gas law.  This equation then can be used to relate the 

pressure at other state points back to the ideal gas reference. 

Critical point reweighting and finite-size scaling 

How can one predict the location of the critical point?  It turns out that systems have a kind of 

universal behavior at this point in the phase diagram.  For many fluids, their behavior at the crit-

ical point follows the same trends as the three-dimensional Ising model (or, equivalently, the 

lattice gas); that is, they fall in the Ising universality class or the Ising criticality class.  In particu-

lar, the probability distribution ℘(𝑈, 𝑁) assumes a universal form.   

We can locate the true critical point by finding reweighting values of 𝑇𝑐, 𝜇𝑐 so that ℘(𝑈, 𝑁) maps 

onto the universal Ising distribution, which has been computed to high accuracy by a number of 

researchers. 

Near the critical point, fluctuations become macroscopic in size.  That means that computed 

properties become sensitive to the size of the system being studied.  In particular, the computed 

𝑇𝑐, 𝜇𝑐 can have a substantial dependence on the system size 𝑉.  Fortunately, these parameters 

have a scaling law behavior with 𝑉.  To locate the infinite system size 𝑇𝑐, 𝜇𝑐 one performs multiple 

studies for different values of 𝑉, each time computing the critical point using the procedure 

above.  Then, one extrapolates to 𝑉 → ∞.  An example of this taken from [Panagiotopoulos, 

2000] is: 
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