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Simulations of bulk phases ChE210D 

Today's lecture: considerations for setting up and running simulations of bulk, iso-

tropic phases (e.g., liquids and gases) 

Periodic boundaries 

Cubic boxes 

In simulations of bulk phases, the presence of explicit interfaces or “walls” in a simulation box 

would have a profound effect on the resulting properties of the system, since these interactions 

are very significant compared to the small size of the system.  Instead, for bulk phases we typically 

implement periodic boundary conditions that realize an infinite number of copies of the simula-

tion box. 

 

Particles have copies of themselves inside every periodic repetition of the simulation box, called 

image particles.  For any given particle, we can find its position in the central box using the near-

est integer operation: 

𝐫0 = 𝐫 − 𝐿nint(𝐫 𝐿⁄ ) 

where 𝐿 is the length of the imaginary cubic volume in which the particles sit.  It may also be a 

vector for rectangular cuboids (i.e., boxes with different side lengths) provided that 𝐿 is replaced 

by the vector 𝐋.  This equation implies a separate operation for each of the 𝑥, 𝑦, 𝑧 coordinates.  

After its application, each coordinate will be in the range −𝐿/2 to 𝐿/2.   

Oftentimes we are interested in the vector and scalar distances between two particles.  We ex-

amine the minimum image distance, the smallest distance between any two images of the par-

ticles.  This distance can be found using an expression similar to that above: 

𝐿 
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𝐫𝑖𝑗 = 𝐫𝑗 − 𝐫𝑖 

𝐫𝑖𝑗
0 = 𝐫𝑖𝑗 − 𝐿 nint(𝐫𝑖𝑗 𝐿⁄ ) 

𝑟𝑖𝑗
0 = |𝐫𝑖𝑗

0 | 

Note that we must first find the vector minimum image distance in order to compute its scalar 

norm.  That is, we must first minimum image each of the 𝑥, 𝑦, 𝑧 coordinates separately. 

Other geometries 

While a cubic box is the most frequently used geometry for periodic boundary conditions, other 

simulation cell geometries are possible: 

• rectangular cuboid 

• parallelpiped 

• hexagonal prism 

• truncated octahedron 

• rhombic dodecahedron 

All of these geometries will regularly tile space and thus can serve to replicate the infinite number 

of periodic images.  The expression for the minimum image distance changes for each one.   The 

choice of one of these alternate geometries can be motivated by  

• the desire to apply a particular symmetry.  For example, a hexagonal simulation box may 

better accommodate hexagonal ordering in a structured fluid or crystal 

• to save on the number of simulation atoms required.  The octahedron resembles a cube 

with its corners cut off and thus requires less atoms.  For systems in which a macromole-

cule is solvated (e.g., a protein), the octahedron reduces the number of solvent molecules 

required (e.g., water). 

Potential truncation 
For nonbonded pairwise interactions we typically truncate the interactions between pairs of 

particles that are separated by large distances.  However, we never apply such treatments to 

bonded interactions. 
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Cutting the potential 

Many nonbonded pairwise potentials decay rapidly with separation distance.  This enables us to 

ignore interactions between pairs of particles that are separated by large distances.  We typically 

implement a cutoff where the energy is approximately only a percent or two of the minimum 

energy. 

For example, consider the Lennard-Jones (LJ) potential: 

𝑢(𝑟) = 4𝜖 [(
𝑟

𝜎
)

−12

− (
𝑟

𝜎
)

−6

] 

A typical cutoff distance is 𝑟𝑐 = 2.5𝜎, beyond which the potential is chosen to be zero: 

𝑢(𝑟) = {
4𝜖 [(

𝑟

𝜎
)

−12

− (
𝑟

𝜎
)

−6

] 𝑟 ≤ 𝑟𝑐

0 𝑟 > 𝑟𝑐

 

This is termed a simple cut of the potential.  Notice that the energy at 𝑟 = 2.5𝜎 is ≈ −0.016𝜖. 

For efficiency reasons, we often avoid the computation of the square root for atom pairs beyond 

the cutoff using the following generic pairwise interaction loop: 

loop over atom i = 1 to N – 1 

 loop over atom j = i+1 to N 

  compute 𝒓𝒊𝒋
𝟐 

  if 𝒓𝒊𝒋
𝟐 < 𝒓𝒄

𝟐 then: 

   compute the interaction energy; if needed, compute 𝒓𝒊𝒋 = √𝒓𝒊𝒋
𝟐 

Considerations with periodic boundary conditions 

With periodic boundary conditions, we want to avoid having to account for multiple periodic 

images of the same particles in the pairwise interaction loop.  We can avoid dealing with multiple 

images if the cutoff distance is less than half of the simulation box width: 

 
𝐿 

𝐿/2 
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Notice that, for pairwise distances larger than 𝐿/2, a particle begins to interact with multiple 

images of the neighboring particles, rather than just the minimum image distance one.  There-

fore, simulations are generally set up so that all cutoff distances obey 

𝑟𝑐 <
𝐿

2
 

Typically, a cutoff is chosen first and the minimum size of the simulation box is then computed.  

Given a desired bulk density, this will then also determine a minimum number of particles. 

Cutting and shifting the potential 

The simple truncation of the potential described above leads to a discontinuity in the pairwise 

potential energy function, across which the forces are undefined.  A better approach is to shift 

the potential for 𝑟 < 𝑟𝑐 so that the energy continuously approaches a zero value at 𝑟𝑐.  To do this, 

we subtract from the pairwise potential the value of the energy evaluated at the cutoff.  For the 

LJ system, 

𝑢(𝑟) = {
4𝜖 [(

𝑟

𝜎
)

−12

− (
𝑟

𝜎
)

−6

] − 4𝜖 [(
𝑟𝑐

𝜎
)

−12

− (
𝑟𝑐

𝜎
)

−6

] 𝑟 ≤ 𝑟𝑐

0 𝑟 > 𝑟𝑐

 

The cut and shift approach to potential truncation is perhaps the most popular treatment and 

results in better energy conservation in molecular dynamics than simple cutting alone. 

Smooth truncation 

The cut and shift approach still results in a potential that has discontinuities in the first derivative 

(the forces) and in higher order derivatives.  For better stability, in particular during energy min-

imization, some authors employ a switching function that smoothly and continuously tapers the 

pair potential to zero between two cutoff distances.   

A typical form that results in continuous first and second derivatives is: 

𝑢smoothed(𝑟) = {

𝑢(𝑟) 𝑟 < 𝑟𝑐,1

𝑆(𝑡)𝑢(𝑟) 𝑟𝑐,1 ≤ 𝑟 < 𝑟𝑐,2

0 𝑟𝑐,2 ≤ 𝑟

 

where the smoothing function 𝑆(𝑡) is given by: 

𝑆(𝑡) = 1 − 10𝑡3 + 15𝑡4 − 6𝑡5    with    𝑡 ≡
𝑟 − 𝑟𝑐,1

𝑟𝑐,2 − 𝑟𝑐,1
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Corrections for cut interactions 

Truncating pair interactions systematically removes a contribution to the net potential energy 

and pressure.  For moderate cutoffs, such as 𝑟𝑐 = 2.5 𝜎 for the LJ system, this contribution can 

constitute a nontrivial fraction of the total.   

For interactions that are cut but not shifted, one can approximately add the interactions beyond 

𝑟𝑐 back into the total energy by assuming 𝑔(𝑟 > 𝑟𝑐) ≈ 1 and using the integral expressions for 

pairwise interactions: 

𝑈 = 𝑈pairs + 𝑈tail 

= [ ∑ 𝑢(𝑟𝑖𝑗)

𝑖<𝑗,𝑟𝑖𝑗<𝑟𝑐

] + [ 
2𝜋𝑁2

𝑉
∫ 𝑟2𝑢(𝑟)𝑑𝑟

∞

𝑟𝑐

] 

Here, 𝑈pairs is the energy for the explicit summation over atom pairs separated by 𝑟𝑖𝑗 < 𝑟𝑐.  The 

second term on the RHS is the tail correction, and can be evaluated analytically.  A similar ap-

proach can be applied to the pressure, 

𝑃 = 𝑃pairs + 𝑃tail 

= [
𝑁𝑘𝐵𝑇

𝑉
−

1

3𝑉
∑ 𝑟𝑖𝑗

𝑖<𝑗,𝑟𝑖𝑗<𝑟𝑐

𝜕

𝜕𝑟𝑖𝑗
𝑢(𝑟𝑖𝑗)] + [−

2𝜋𝑁2

3𝑉2
∫ 𝑟3

𝑑𝑢(𝑟)

𝑑𝑟
𝑑𝑟

∞

𝑟𝑐

] 

For the Lennard-Jones system, we find that 

𝑈tail =
8𝜋𝑁2

3𝑉
𝜖𝜎3 [

1

3
(

𝑟𝑐

𝜎
)

−9

− (
𝑟𝑐

𝜎
)

−3

] 

𝑃tail =
16𝜋𝑁2

3𝑉2
𝜖𝜎3 [

2

3
(

𝑟𝑐

𝜎
)

−9

− (
𝑟𝑐

𝜎
)

−3

] 

If multiple atom types are present and all have the same interaction cutoff distance, 

𝑈tail =
2𝜋

𝑉
∫ 𝑟2 [∑ ∑ 𝑁𝑋𝑁𝑌𝑢𝑋𝑌(𝑟)

𝑀

𝑌=1

𝑀

𝑋=1

] 𝑑𝑟
∞

𝑟𝑐

 

𝑃tail = −
2𝜋

3𝑉
∫ 𝑟3 [∑ ∑ 𝑁𝑋𝑁𝑌

𝑑𝑢𝑋𝑌(𝑟)

𝑑𝑟

𝑀

𝑌=1

𝑀

𝑋=1

] 𝑑𝑟
∞

𝑟𝑐

 

It can also be shown that cut potentials (not shifted) also incur an impulse correction term in the 

pressure due the discontinuous change in energy at 𝑟𝑐, but this is rarely used in simulations. 
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Corrections for cut and shifted interactions 

For potentials that are cut and shifted, the expression for the correction to the energy also in-

cludes the averaged (𝑔(𝑟) ≈ 1) interactions below the cutoff: 

𝑈tail =
2𝜋𝑁2

𝑉
∫ 𝑟2𝑢(𝑟𝑐)𝑑𝑟

𝑟𝑐

0

+  
2𝜋𝑁2

𝑉
∫ 𝑟2𝑢(𝑟)𝑑𝑟

∞

𝑟𝑐

 

=
2𝜋𝑁2

3𝑉
𝑟𝑐

3𝑢(𝑟𝑐) +  
2𝜋𝑁2

𝑉
∫ 𝑟2𝑢(𝑟)𝑑𝑟

∞

𝑟𝑐

 

For multiple atom types with the same 𝑟𝑐, 

𝑈tail =
2𝜋

3𝑉
𝑟𝑐

3 [∑ ∑ 𝑁𝑋𝑁𝑌𝑢𝑋𝑌(𝑟𝑐)

𝑀

𝑌=1

𝑀

𝑋=1

] +
2𝜋

𝑉
∫ 𝑟2 [∑ ∑ 𝑁𝑋𝑁𝑌𝑢𝑋𝑌(𝑟)

𝑀

𝑌=1

𝑀

𝑋=1

] 𝑑𝑟
∞

𝑟𝑐

 

The pressure tail correction, however, is the same as in the cut case. 

Considerations for potential truncation corrections  

Generally speaking, these corrections should not be applied if: 

• The system is not a bulk phase, or involves interactions with interfaces. 

• The system is anisotropic. 

• The pairwise interactions themselves are anisotropic (e.g., rotation of an atom affects 

the pairwise energy… this would be the case if the atom had a dipole interaction on it). 

Generally speaking, unless quantitative agreement is desired for bulk averages, one can perform 

a simulation without using the tail corrections and obtain the same qualitative (and sometimes 

even quantitative) results.  By performing runs for various values of 𝑟𝑐, it is then possible to assess 

the influence of neglecting the cutoff interactions.  It is not uncommon to neglect the tail correc-

tions, but one should always be careful to report the actual tail treatment in any presentation of 

simulation results. 

Treating long-ranged interactions 
Pair interactions that do not decay fast enough with distance can be problematic for simulations.  

Let a generic pair interaction have the form  

𝑢(𝑟) = 𝑎𝑟−𝑛 

Here, 𝑎 is a constant (positive or negative) and 𝑛 is an exponent that is greater than one.  Consider 

the tail correction: 
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𝑈tail =
2𝜋𝑁2

𝑉
∫ 𝑟2𝑎𝑟−𝑛𝑑𝑟

∞

𝑟𝑐

 

=
2𝜋𝑁2𝑎

𝑉
∫ 𝑟2−𝑛𝑑𝑟

∞

𝑟𝑐

 

This integral diverges for 𝑛 ≤ 3.  Interactions of this sort are termed long-ranged, and they re-

quire special treatment.  For 𝑛 > 3, the interactions are short-ranged and can be handled with a 

tail correction, or simply truncated without correction. 

Physically, what happens with long-ranged interactions is the following.  The number of atoms 

interacting with a central atom grows as 𝑟2.  On the other hand, the energy decays as 𝑟−𝑛.  If the 

energy does not decay fast enough, the net contribution of energies from atoms farther away 

will outweigh that from those nearby; the total energy therefore becomes infinite in a bulk sys-

tem. 

Coulomb interactions 

A common long-ranged interaction is the Coulomb law that applies to atoms with partial charges: 

𝑢(𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖𝑗
 

We could imagine that the tail integral for a central particle 𝑖 might look like: 

𝑈tail,i =
2𝜋𝑁2

𝑉
∫ 𝑟2

𝑞𝑖⟨𝑞⟩𝑟

4𝜋𝜖0𝑟
𝑑𝑟

∞

𝑟𝑐

 

=
𝑁2𝑞𝑖

2𝜖0𝑉
∫ 𝑟⟨𝑞⟩𝑟𝑑𝑟

∞

𝑟𝑐

 

Here ⟨𝑞⟩𝑟 is the average charge of particles in a spherical shell a distance 𝑟 away from the central 

particle.  For a bulk neutral system (zero net charge), we expect that ⟨𝑞⟩𝑟 → 0 as 𝑟 → ∞.  There-

fore, it is possible that this integral could converge.   

It turns out that Coulombic interactions, while long-ranged, are in fact convergent for neutral 

systems.  However, these interactions require special treatment because it is not possible to 

compute a tail correction directly; the quantity ⟨𝑞⟩𝑟 is not known as a function of 𝑟.  Instead, 

special techniques are used to perform the sum of the interactions for an infinite number of rep-

licas of the simulation cell. 

For periodic systems with a net charge, the total energy depends on the number of periodic rep-

licas.  In the limit of an infinite number of replicas, these systems have an infinite energy and are 

not thermodynamic (i.e., the energy does not scale extensively with system size). 
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Note that these considerations do not apply to the screened Coulomb potential, which is short-

ranged due to the damping exponential involving the Debye length.  Keep in mind that the 

screened Coulomb potential is a highly approximate description of electrostatic interactions. 

The Ewald summation 

General approach 

A formal way to treat Coulombic interactions was devised by Ewald in 1921.  At a fundamental 

level, the goal of this approach is to compute the electrostatic energies summed over the central 

simulation box and all periodic image replicas of it: 

𝑈 =
1

2
∑ ∑

𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖𝑗
0

𝑁

𝑗≠𝑖

𝑁

𝑖=1

+ ∑ ∑ ∑
𝑞𝑖𝑞𝑗

4𝜋𝜖0|𝐫𝑖𝑗
0 + 𝐧|

𝑁

𝑗=1

𝑁

𝑖=1𝐧

 

The first term denotes the interactions within the central box, and the second denotes those 

between atoms in the central box and images and between atoms in various periodic replicas.  

Here, the superscript 0 indicates the minimum image distance.  Moreover, the vector 𝐧 denotes 

all lattice vectors pointing from the central box to a periodic image: 

𝐧 = (±𝑛𝑥𝐿, ±𝑛𝑦𝐿, ±𝑛𝑧𝐿)    𝑛𝑥, 𝑛𝑦, 𝑛𝑧 positive integers such that 𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 ≥ 1 

 

As written above, the summation over an infinite number of periodic replicas converges very 

slowly.  Moreover, it is conditionally convergent, meaning that care must be taken in the order 

in which the terms are added. 

Ewald’s solution to this problem was to turn the sum above into a mathematically equivalent 

version that converges much faster.  Note that a point charge 𝑖 can be expressed as a delta func-

tion in the charge density: 
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𝜌𝑖(𝐫) = 𝑞𝑖𝛿(𝐫 − 𝐫𝑖) 

The Ewald solution is to subtract from the point charges equivalent smeared charges whose den-

sity is Gaussian in space.  These charges must then be identically added to maintain the original 

system: 

 

The two terms that result from this approach (on the RHS of the diagram above) are termed the 

real-space and reciprocal-space components of the electrostatic energy.  They are so-named be-

cause the latter is solved in Fourier space. 

Real-space component 

For the real-space component, we subtract the smeared from the discrete charges, 

𝜌𝑖(𝐫) = 𝑞𝑖 [𝛿(𝐫 − 𝐫𝑖) − 𝛼3𝜋
3
2𝑒−𝛼2|𝐫−𝐫𝑖|2

] 

Here, 𝛼 is often called the decay parameter and controls the width of the Gaussian distribution.  

The limit 𝛼 → ∞ returns an infinitely peaked Gaussian.  The factors in front of the exponential on 

the RHS ensure normalization across space of the smeared distribution.   

By solving Poisson’s equation for the charge density, one obtains the following electrostatic en-

ergy due to this charge density: 

𝑈real = ∑
𝑞𝑖𝑞𝑗

4𝜋𝜖0
erfc(𝛼𝑟𝑖𝑗)

𝑖<𝑗

 

Here, erfc is the complementary error function.   This function decays very fast with respect to 

its argument, such that the pair interaction represented here is no longer long-ranged.  As a re-

sult, a simple truncation of this interaction at 𝑟𝑐 = 𝐿 usually has no effect on the summation. 

Reciprocal-space component 

To the real-space term, we must add the reciprocal energy, given by the sum of the smeared-out 

charges in the central box and all image particles in the infinite replication of the central box.  

One can find this energy by summing the Gaussian charges in a Fourier series.  A detailed deriva-

tion is available in Frenkel and Smit.  The result is: 
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𝑈recip =
1

2𝐿3𝜖0
∑

1

|𝐤|2
|𝜌(𝐤)|2 exp (−

|𝐤|2

4𝛼
)

𝐤≠0

−
𝛼

1
2𝜋

1
2

4𝜋𝜖0
∑ 𝑞𝑖

2

𝑁

𝑖=1

 

𝜌(𝐤) ≡ ∑ 𝑞𝑖 exp(𝑖𝐤 ⋅ 𝐫𝑖)

𝑁

𝑖=1

 

Here, the summation proceeds over all reciprocal-space vectors: 

𝐤 = (±
2𝜋𝑛𝑥

𝐿
, ±

2𝜋𝑛𝑦

𝐿
, ±

2𝜋𝑛𝑧

𝐿
)    𝑛𝑥 , 𝑛𝑦, 𝑛𝑧 positive integers such that 𝑛𝑥

2 + 𝑛𝑦
2 + 𝑛𝑧

2 ≥ 1 

Typically the summation is not taken to infinity but to a finite number of vectors.  A common 

criterion is to include all vectors such that 

|𝐤| < 𝑘max 

Notice that the reciprocal summation involves a reciprocal space density 𝜌(𝐤) that is a complex 

number.  The computation of this quantity is usually performed using complex data types in 

Fortran or other programming languages. 

Polarization energy 

There is one final interaction that it often included in computations with electrostatics in addition 

to the two terms above. Neutral periodic systems involving partial charges can still have a net 

nonzero dipole, and this dipole can interact with whatever boundary exists around the system.  

This polarization energy is given by: 

𝑈pol =
1

(2𝜖ext + 1)8𝜋𝜖0𝐿3
|∑ 𝑞𝑖𝐫𝑖

𝑁

𝑖=1

|

2

 

Here, 𝜖ext is the relative permittivity of the medium at the boundaries.  For good conductors like 

metals, 𝜖ext → 0 and the polarization energy vanishes.   

Parameters of the Ewald method 

There are two parameters of the Ewald approach that affect the convergence behavior of the 

sum above: 

• 𝛼 – controls the rate of decay of the Gaussian smeared charges, and of the real-space 

interactions ~erfc(𝛼𝑟).  Faster decay rates increase the accuracy of the real-space calcu-

lation but increase the number of reciprocal space vectors 𝐤 required for equivalent ac-

curacy in the reciprocal summation. 
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• 𝑘max - controls the number of reciprocal space vectors used, proportional roughly to 𝑘max
3 .  

More vectors increases accuracy, but requires greater memory storage and computation 

time. 

A typical choice for these parameters that reflects a compromise between the two is: 

𝛼 =
5.6

𝐿
         𝑘max = 5 ×

2𝜋

𝐿
 

A longer discussion of the choice of values for these can be found in Frenkel and Smit. 

Performance of the Ewald method 

Ewald summations add substantial computational expense to the evaluation of the energy and 

forces, and typically dominate the simulation time.  Nominally, the Ewald method scales as 𝑁2 

for the real-space term and as 𝑁 for the reciprocal-space term.  However, by choosing  

𝛼 ∝
𝑁1 6⁄

𝐿
 

the algorithm can be made to scale as 𝑁3 2⁄  [Frenkel and Smit]. 

Typically the reciprocal-space summation is the more computationally intensive.  Fast Fourier 

transforms (FFTs) can speed this part of the method substantially, and result in better cost scal-

ings of 𝑁 log 𝑁 for the algorithm. 

For very large systems, typically of 1000s or greater numbers of atoms, the Ewald method be-

comes extremely expensive.  In these cases, alternative mesh-based approaches can be used in 

which the partial charges on the atoms are distributed to grid points on a finely-discretized cubic 

lattice in space.  These methods take advantage of the fact that the reciprocal-space summation 

can be solved much faster using FFTs on lattices.  Some methods are: 

• Particle-Mesh Ewald (PME) 

• Smooth Particle-Mesh Ewald (SPME) 

• Particle-Particle/Particle-Mesh Ewald (PPME) 

These algorithms typically scale as 𝑁 log 𝑁 in computational expense.  The choice of which to use 

often depends on whether or not the forces are needed to high accuracy (e.g., for MD simula-

tions). 
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Slab geometries 

Systems that are periodic in only two dimensions are said to have slab geometry.  Examples in-

clude fluids confined between walls and thin films.  For these systems, the Ewald summation 

must be modified because the original equations assume infinite replication in all spherical di-

mensions.  Several approaches have been developed for these situations.  The reader is referred 

to Frenkel and Smit. 


