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ABSTRACT

Both repulsive and attractive terms are necessary in the microscopic pair potential in order
to observe macroscopic liquid and vapor phases. We explore the conditions for phase
equilibria for particles interacting via Lennard-Jones and square-well pair potentials. A
wide range of particle densities are simulated in the grand canonical Monte Carlo ensemble
using the Wang-Landau method to develop a histogram flat for all particle numbers. We
find that the critical temperature for a square-well fluid scales with the range of the
attractive energy between particles. In particular, when the attractive range is half the
width of the hard-shell diameter (A = 1.5) the temperature-density phase envelope is
similar to that for the Lennard-Jones fluid.

I. INTRODUCTION

Particles that do not interact only exhibit a single disordered phase. Particles that repel
each other at close distances, but do not interact otherwise, additionally exhibit an ordered
phase. In order to observe the three phases common to everyday experience, both
repulsive and attractive forces between particles are necessary.

Both of these forces are present in the Lennard-Jones (LJ) pair potential
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where ris the distance between particles, o is the characteristic diameter of a L] particle
and ¢ is the strength of the interaction. The attractive term in the L] potential follows the
theoretically derived inverse-6t scaling with particle separation. The repulsive term was
selected for computational efficiency, since it is the square of the attractive term. Both
terms are short-range. In this paper we examine the relationship between the two fluid
phases and the range of the attractive interaction.

However, when one attempts to vary the range of the attractive L] potential, for example by
increasing the power from -6 to -5, the strength of the interaction also changes. We,
therefore, turn to the simplest model of a 2-phase fluid: the square-well (SQ) fluid. SQ
particles interact via the pair potential
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where o is the hard-sphere diameter of the particle, € is the magnitude of the interaction,
and A scales the range of the attractive interaction.



Using Monte Carlo (MC) simulations, we find the conditions for equilibrium between the
liquid and vapor phases of the SQ fluid for A = 1.25, 1.5, 2.0. We compare these results to

that for the L] fluid.

Il. METHODS

Simulations of the square-well fluid were performed using Monte Carlo moves in the grand
canonical ensemble, holding the chemical potential i, volume V and temperature T
constant. Monte Carlo moves that displace, insert and delete particles were employed in a
2:1:1 ratio, respectively. The state conditions uVT were selected by considering the
simulation algorithm used to sample a range of densities encompassing both liquid and

vapor states.

Table 1. Conditions sampled by simulation.

Pair Potential Temperature | Nmax
Lennard-Jones 0.75 170
0.80 170
0.85 170
0.90 170
0.95 150
1.00 150
1.05 150
1.10 150
Square-well, 0.66 180
A=1.25 0.68 174
0.70 170
0.72 160
0.74 150
0.75 150
0.76 130
0.77 130
Square-well, 1.00 140
A=1.5 1.05 140
1.10 140
1.15 120
1.17 120
1.19 120
1.21 120
1.22 120
Square-well, 2.40 140
A=2.0 2.50 120
2.60 120
2.70 100
2.75 100

We used the Wang-Landau method
because it determines the free energy, 4,
with high accuracy for all N on a specified
range Nmin to Nmax. To get good statistics,
we want to bias the system in such a way
that all N are equally probable; this is
achieved by developing a bias equal to A.
In the Wang-Landau method, we chose
this bias to initially be zero, but after
every MC move, the bias for the resulting
value of N was decreased by an amount g,
making it less likely for the system to
return to that state without first visiting
all other values of N. The modification
factor g was initially set to 1 and was
reduced by a factor of 2 when the
sampled histogram of N was flat, such
that the minimum bin height was 80% of
the average bin height. We continued this
algorithm until g < 10-°.

The free energy is reweighted post-
simulation to the coexistence chemical
potential, so the ensemble can be
simulated for any arbitrary u. For
convenience, we chose u to be that of the
ideal gas such that the excess chemical
potential, pex = tt — i = 0.

The volume V directly determines the
lowest density pmin =1 / V that the
system can reach. The probability of pmin
at coexistence should be significantly less



than the most probable density. However, in order to simulate liquid densities, a larger VV
requires a larger Nmax, and thus longer simulation times are required. We found V=200 o3
to be a good trade-off between these competing interests.

The range of temperatures T was chosen to be near but below the critical temperature for
each fluid. Corresponding values of Npqx are shown in Table 1.

For soft-core potentials, such as L], the system is relatively insensitive to the chosen Npax.
Although dense configurations often have core overlap, and thus in an unbiased simulation
would be sampled only rarely, using the Wang-Landau method any configuration with a
finite energy can be accessed once enough bias has been built up. For square-well fluids,
however, the potential energy of overlapping particles is infinite. No amount of sampling of
other configurations will ever drive the system to access configurations with core overlap.
Thus simulations with a poorly chosen Ny for the square-well fluid may never finish.

lll. RESULTS & DISCUSSION

The coexistence curves for the L] and square-well fluids with A = 1.25, 1.5, 2.0 are shown in
Figure 1. The value of A significantly elevates or depresses the critical temperature of the
square-well fluid. The critical temperature of SQ for A = 1.5 is on the order of L]. However,
for A = 2.0 the critical temperature is more than doubled or for A = 1.25 the critical
temperature is about 2/3 the A = 1.5 value.
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Figure 1. Temperature-density phase diagrams for the Lennard-Jones (L]) and square-well
(SQ) fluids showing the equilibrium vapor and liquid densities at temperatures
approaching the critical temperature. The parameter A scales the range of the attractive
interaction. Density errors were calculated from multiple runs and are not shown since
they were < 0.02.



From these results, we could expect in the limit that A = 1, we recover the hard sphere
fluid, which does not exhibit a disordered-disordered phase transition. Additionally, it
would be interesting to see the liquid-vapor coexistence curves in the context of the full
phase diagram, including both liquid-solid and vapor-solid equilibrium conditions.

As mentioned above, low temperature simulations of square-well fluids were highly
sensitive to the chosen Npmax. In fact, the two lowest temperature simulations at T=0.66 and
T=0.68 did not finish within the time frame of this project. With this limitation in mind, we
also simulated a modified square-well fluid in which the hard core of the pair potential was
replaced by the L] inverse-12th term. While this modified square-well fluid did not exhibit
the same sensitivity to Nmax, however, the phase diagram was significantly altered.
Specifically, the critical temperature of the modified square-well temperature was greater
than for its unmodified counterpart. Alternatively, a more stiff repulsive term could be used
to modify the square well potential or biased insertion moves that exhibit increased
acceptance at high densities could be developed.



